安徽省蚌埠市皖北私立联考2023-2024学年高二下学期5月阶段性检测数学试题(Word版附解析)
展开数学
考生注意:
1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知数列中,,且,则( )
A. 4B. 6C. 7D. 13
2. 如果动点满足,则点的轨迹是( )
A. 椭圆B. 双曲线C. 抛物线D. 线段
3. 在空间直角坐标系中,已知三点的坐标分别为,是过点且以为法向量的平面上的任意一点,则满足的方程是( )
A. B.
C D.
4. 若函数图象在点处的切线方程为,则( )
A. 13B. 7C. 4D. 1
5. 若过点且与双曲线有且只有一个公共点的直线有3条,则该双曲线的离心率是( )
A. B. C. 2D. 4
6. 已知在数列中,,若点在直线上,则=( )
A. 253B. 1021C. 1024D. 1027
7. 小王家附近有A,B两家超市,小王第一次购物时从两家超市中随机选择一家,且去每家超市概率相等.如果他第一次购物时去A超市,那么第二次购物去A超市的概率为0.7,如果他第一次购物时去B超市,那么第二次购物去A超市的概率为0.6,则小王第二次购物去B超市的概率是( )
A. 0.65B. 0.6C. 0.4D. 0.35
8. 如图,一个椭圆形花坛分为A,B,C,D,E,F六个区域,现需要在该花坛中栽种多种颜色的花.要求每一个区域种同一颜色的花,相邻区域所种的花颜色不能相同.现有5种不同颜色(含红色)的花可供选择,B区域必须种红花,则不同的种法种数为( )
A. 156B. 144C. 96D. 78
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.
9. 已知实数,满足,则( )
A. 当时,的最小值是B. 的最大值是
C. 的最小值是D. 的最小值是1
10. 已知(,a为正常数)的展开式中各项系数的和为729,二项式系数的和为64,则( )
A. B. 展开式中无理项有3项
C. 展开式中系数最大的项是第4项D. 展开式中常数项为第5项
11. 已知函数及其导函数的定义域均是,是的唯一零点,且,则( )
A. B.
C. D.
三、填空题:本题共3小题,每小题5分,共15分.
12. 已知F1,F2分别是椭圆左、右焦点,M是椭圆上的动点,点A(1,1),则的最大值是________.
13. 某金店用天平称某种物品的质量(砝码仅允许放在一个秤盘中),今有5件物品,其质量分别为50克,60克、70克、80克,90克,有4个砝码,质量分别为10克、20克、30克、40克.若要求每次称量时所用的砝码数量最少,则用天平随机称某件物品(每件物品被选中的概率相同)的质量,所用的砝码数量的期望值为________.
14. 为参加一年一度的省高中生数学联赛,某中学先期举行选拔赛,根据初试成绩选出成绩优秀的20人进行复试.复试共设三道题,全部答对者获一等奖,答对两道者获二等奖,答对一道者获三等奖.已知某学生进入了复试,他在复试中前两题答对的概率均为a,第三题答对的概率为b若该生获得―等奖的概率为,获得二等奖的概率为p,则p的最小值为________.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15. 已知等差数列的前n项和为.
(1)求的通项公式;
(2)设,数列的前n项和为,若恒成立,求实数m的最小值.
16. 如图,正方体的棱长为2,M是棱AB的中点,P是棱上的点.
(1)求直线DB1与平面所成角的正弦值.
(2)当点Р在何处时,点P到平面的距离最小?最小值是多少?
17. 某公司举行新春联欢活动,活动有一个环节,所有员工抽取红包,每位员工可从下面两种方案中选择一种抽取红包.
方案一:4个红包内分别装有现金200元,400元、400元,800元,参与抽红包的员工可从中随机抽取2个;
方案二:员工通过手机扫公司提供的二维码进入活动页面抽取红包,每位员工可抽4次,每次抽中红包的概率均为,每个红包的金额均为元.
员工甲通过方案一抽取红包,员工乙通过方案二抽取红包,记甲、乙抽取的红包总金额分别为,元.
(1)求的分布列及期望;
(2)若,求的值.
18. 已知抛物线C:与椭圆E:一个交点为,且E的离心率.
(1)求抛物线C和椭圆E的方程;
(2)过点A作两条互相垂直的直线AP,AQ,与C的另一交点分别为P,Q,求证:直线PQ过定点.
19. 已知函数.
(1)若,求的极值;
(2)若恒成立,求实数的取值范围.
2023-2024学年安徽省蚌埠市皖北私立联考(致远、禹泽、汉兴)高二(下)期中数学试卷(含解析): 这是一份2023-2024学年安徽省蚌埠市皖北私立联考(致远、禹泽、汉兴)高二(下)期中数学试卷(含解析),共12页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠市皖北私立联考2023-2024学年高二下学期4月期中考试数学试题: 这是一份安徽省蚌埠市皖北私立联考2023-2024学年高二下学期4月期中考试数学试题,共6页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠市皖北私立联考(禹泽、汉兴)2023-2024学年高二下学期4月期中考试数学试题(原卷版+解析版): 这是一份安徽省蚌埠市皖北私立联考(禹泽、汉兴)2023-2024学年高二下学期4月期中考试数学试题(原卷版+解析版),文件包含安徽省蚌埠市皖北私立联考禹泽汉兴2023-2024学年高二下学期4月期中考试数学试题原卷版docx、安徽省蚌埠市皖北私立联考禹泽汉兴2023-2024学年高二下学期4月期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。