


















初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法优秀教学作业ppt课件
展开情境导入Cntext intrductin
知识精讲Knwledge-based lecture
针对训练Fr training
典例解析Analysis f examples
达标测试Test t meet standards
小结梳理Summary and cmbing
1.理解并掌握同底数幂的乘法法则.(重点)2.能够运用同底数幂的乘法法则进行相关计算.(难点)3.通过对同底数幂的乘法运算法则的推导与总结,提升自身的推理能力.
an表示的意义是什么?其中a、n、an分别叫做什么?
问题1:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103s可进行多少次运算?
解:1015×103 =(10×10×…×10)×(10×10×10) =10×10×…×10 =1018
请同学们根据乘方的意义理解,完成下列填空.(1)25×22=( )×( )=____________________=2( )(2)a3·a2=( )×( )=____________=a( )(3)5m×5n=( )×( )=_____________=5( )
2×2×2×2×2×2×2
思考:观察上面各题左右两边,底数、指数有什么关系?
猜想:am·an= (m、n都是正整数)
=am+n
am•an=
同底数幂乘法法则:am•an=______.(m,n都是正整数) 即:同底数幂相乘,底数_____,指数_____.
am+n
计算:(1)105×106=_______; (2)a7·a3 =_______;(3)x5·x7=_______; (4)(-b)3·(-b)2 =__________.
类比同底数幂的乘法公式:
当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?用字母表示am·an·ap等于什么呢? am·an·ap=______.(m,n,p都是正整数)
a2·a6·a3 =__________
例1.计算:(1)x2·x5 (2) a·a6 (3)(-2)×(-2)4×(-2)3 (4)xm·x3m+1
解:(1) x2·x5=x2+5=x7 (2) a·a6=a1+6=a7(3) (-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256(4) xm·x3m+1=xm+3m+1=x4m+1
例2.计算:(1)(a+b)2·(a+b)3 (2)(m-n)3·(m-n)2·(m-n)6 (3)(x-y)2·(y-x)5
解:(1)(a+b)2·(a+b)3 =(a+b)2+3 =(a+b)5(2)(m-n)3·(m-n)2·(m-n)6 =(m-n)3+2+6 =(m-n)11(3)(x-y)2·(y-x)5 =(y-x)2·(y-x)5 =(y-x)2+5 =(y-x)7
例3.计算:(1)x3·x5+x·x3·x4 (2)(2x-1)2·(2x-1)3+(2x-1)4·(1-2x)
解:(1)原式=x8+x1+3+4=x8+x8=2x8(2)原式=(2x-1)5-(2x-1)4·(2x-1)=(2x-1)5-(2x-1)5=0
同底数幂乘法法则的逆用:
想一想:am+n可以写成哪两个因式的积?
am+n = am·an
填一填:(1) a6 = a·____ = a2·____(2) 若 xm = 3,xn = 2,那么:xm+n =___.
分析:xm+n= xm·xn=3×2=6
例4. (1)若xa=3,xb=4,xc=5,求2xa+b+c的值; (2)已知23x+2=32,求x的值.
(2)∵ 23x+2=32=25, ∴3x+2=5, ∴x=1.
解:(1) 2xa+b+c=2xa·xb·xc=120;
【点睛】(1)关键是逆用同底数幂的乘法公式,将所求代数式转化为几个已知因式的乘积的形式,然后再求值.(2)关键是将等式两边转化为底数相同的形式,然后根据指数相等列方程解答.
例5.我国自行设计制造的“神舟六号”飞船进入圆形轨道后的飞行速度为7.9×103米/秒,它绕地球一周需5.4×103秒,问该圆形轨道的一周有多少米?(结果用科学记数法表示)
1.下列运算中,正确的是( )A.a3·a3=2a3 B.a3·a3=a6 C.a3·a3=a9 D.a3+a3=a62.化简(-x)3·(-x)4,结果正确的是( )A.-x7 B.x7 C.x12 D.-x123.若am=3,an=5,则am+n等于( )A.243 B.125 C.8 D.15
4.若m·23=26,则m等于( )A.2 B.4 C.6 D.85.若a2n-1·an+2=a7,则n的值是( )A.2 B.3 C.4 D.5
6.计算:(1) x4·x6=____;(2) a·a4=_____;(3)5×54×53=______;(4) x2n+1·x3n-1=______.7.计算:(1)3×9×27×3m=______;(2)(-x)·x4·(-x)3·x2=______.8.(1)若3n+1=81,则n=____;(2)若23·85=8n,则n=_____.9.已知x+y-3=0,则2x·2y的值是______.10.按一定规律排列的一列数:21,22,23,25,28,213,…若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______________.
(4)-a3·(-a)2·(-a)3.
(2)(a-b)3·(b-a)4;
(3) (-3)×(-3)2 ×(-3)3;
(1)(2a+b)2n+1·(2a+b)3;
解:(1)(2a+b)2n+1·(2a+b)3=(2a+b)2n+4;
(2)(a-b)3·(b-a)4=(a-b)7;
(3) (-3)×(-3)2 ×(-3)3=36;
(4)-a3·(-a)2·(-a)3=a8.
12.1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?
解:3.75×105×1×1010=3.75×1015(千克).答:这些镭完全蜕变后放出的热量相当于3.75×1015千克煤放出的热量.
14.定义新运算:a☆b=10a×10b.(1)试求:12☆3和4☆8的值;(2)判断(a☆b)☆c是否与a☆(b☆c)相等?验证你的结论.
初中数学人教版八年级上册第十五章 分式15.2 分式的运算15.2.3 整数指数幂获奖教学作业ppt课件: 这是一份初中数学人教版八年级上册<a href="/sx/tb_c10256_t3/?tag_id=26" target="_blank">第十五章 分式15.2 分式的运算15.2.3 整数指数幂获奖教学作业ppt课件</a>,文件包含人教版数学八年级上册1522分式的乘方教学课件pptx、人教版八年级数学上册1522分式的乘方教学设计docx、人教版八年级数学上册1522分式的乘方分层作业原卷版docx、人教版八年级数学上册1522分式的乘方分层作业解析版docx、人教版八年级数学上册1522分式的乘方导学案docx等5份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
人教版八年级上册14.2.2 完全平方公式评优课教学作业课件ppt: 这是一份人教版八年级上册<a href="/sx/tb_c88723_t3/?tag_id=26" target="_blank">14.2.2 完全平方公式评优课教学作业课件ppt</a>,文件包含人教版数学八年级上册1423添括号教学课件pptx、人教版八年级数学上册1423添括号教学设计docx、人教版八年级数学上册1423添括号分层作业原卷版docx、人教版八年级数学上册1423添括号分层作业解析版docx、人教版八年级数学上册1423添括号导学案docx等5份课件配套教学资源,其中PPT共20页, 欢迎下载使用。
初中数学第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.4 整式的乘法完美版教学作业ppt课件: 这是一份初中数学<a href="/sx/tb_c88720_t3/?tag_id=26" target="_blank">第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.4 整式的乘法完美版教学作业ppt课件</a>,文件包含人教版数学八年级上册1417整式的除法教学课件pptx、人教版八年级数学上册1417整式的除法教学设计docx、人教版八年级数学上册1417整式的除法分层作业原卷版docx、人教版八年级数学上册1417整式的除法分层作业解析版docx、人教版八年级数学上册1417整式的除法导学案docx等5份课件配套教学资源,其中PPT共27页, 欢迎下载使用。