|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)
    立即下载
    加入资料篮
    2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)01
    2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)02
    2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)

    展开
    这是一份2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析),共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
    1.设等差数列{an},a2=3,d=5,则a5=( )
    A. −5B. 18C. 23D. 28
    2.若函数f(x)满足limΔx→0f(1−Δx)−f(1)Δx=18,则f′(1)=( )
    A. −18B. −14C. 18D. 14
    3.设{an}是等比数列,且a2+a3=2,a5+a6=−16,则公比q=( )
    A. −2B. 2C. −8D. 8
    4.在(2− x)7的展开式中,含x2的项的系数为( )
    A. −280B. 280C. −560D. 560
    5.某志愿者小组有5人,从中选3人到A、B两个社区开展活动,其中1人到A社区,则不同的选法有( )
    A. 12种B. 24种C. 30种D. 60种
    6.直线y=kx与曲线y=ln2x相切,则实数k的值为( )
    A. 1B. 12C. 2eD. 2e2
    7.若P(B|A)=13,P(A)=34,P(B)=12,则P(A|B)=( )
    A. 14B. 34C. 13D. 12
    8.不等式2lnx> xln2的解集是( )
    A. (1,2)B. (4,+∞)C. (2,+∞)D. (2,4)
    二、多选题:本题共3小题,共15分。在每小题给出的选项中,有多项符合题目要求。
    9.已知随机变量X~N(3,1),则下列说法正确的是( )
    A. 若Y=X+3,则E(Y)=6B. 若Y=3X+1,则D(Y)=3
    C. P(X≤2)=P(X≥4)D. P(0≤X≤4)=1-2P(X≥4)
    10.若函数f(x)的定义域为(−4,3),其导函数f′(x)的图象如图所示,则( )
    A. f(x)有两个极大值点B. f(x)有一个极小值点
    C. f(0)>f(1)D. f(−2)>f(−3)
    11.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,它的前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,则数列1,3,6,10被称为二阶等差数列,现有二阶等差数列{cn},其前6项分别为4,8,10,10,8,4,设其通项公式cn=g(n).则下列结论中正确的是( )
    A. 数列{cn+1−cn}的公差为2B. i=120(ci+1−ci)=−300
    C. 数列{cn}的前7项和最大D. c21=−296
    三、填空题:本题共3小题,每小题5分,共15分。
    12.已知(2x−1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= .
    13.已知随机变量X的分布列如下:
    若E(X)=1.2,则D(X)= .
    14.人们为了解一支股票未来一定时期内价格的变化,往往会去分析影响股票价格的基本因素,比如利率的变化.现假设人们经分析估计利率下调的概率为60%,利率不变的概率为40%.根据经验,人们估计,在利率下调的情况下,该支股票价格上涨的概率为80%,而在利率不变的情况下,其价格上涨的概率为40%,则该支股票将上涨的概率为 .
    四、解答题:本题共5小题,共60分。解答应写出文字说明,证明过程或演算步骤。
    15.(本小题12分)
    已知f(x)=−f′(1)x2+x+2lnx.
    (1)求f′(1)并写出f(x)的表达式;
    (2)证明:f(x)≤x−1.
    16.(本小题12分)
    近年来,养宠物的人越来越多,在供需端及资本的共同推动下中国宠物经济产业迅速增长,数据显示,目前中国养宠户数在全国户数中占比为15.
    (1)随机抽取200名成年人,并调查这200名成年人养宠物的情况,统计后得到如下列联表:
    依据小概率值α=0.01的独立性检验,判断能否认为养宠物与性别有关?
    (2)记2018−2023年的年份代码x依次为1,2,3,4,5,6,中国宠物经济产业年规模为y (单位:亿元),由这6年中国宠物经济产业年规模数据求得y,关于x的回归方程为y=0.86x+0.63,且 i=16(yi−y)2≈3.61.求相关系数r,并判断该回归方程是否有价值.
    参考公式及数据:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d
    回归方程y=bx+a,其中b=i=1n(xi−x)(yi−y)i=1n(xi−x)2,a=y−bx,相关系数r=i=1n(xi−x)(yi−y) i=1n(xi−x)2i=1n(yi−y)2;若|r|≥0.75,则认为y与x有较强的相关性.其中 17.5≈4.18.
    17.(本小题12分)
    在一个不透明的密闭纸箱中装有10个大小、形状完全相同的小球,其中8个白球,2个黑球.小张每次从纸箱中随机摸出一个小球观察其颜色,连续摸4次,记随机变量X为小张摸出白球的个数.
    (1)若小张每次从纸箱中随机摸出一个小球后放回纸箱,求E(X)和D(X);
    (2)若小张每次从纸箱中随机摸出一个小球后不放回纸箱,求X的分布列.
    18.(本小题12分)
    已知数列{an}的前n项和为Sn,且Sn满足lg2(Sn+2)=n+1.
    (1)求数列{an}的通项公式;
    (2)数列{bn}的通项bn=n,求{an⋅bn}的前n项和Mn;
    (3)在任意相邻两项ak与ak+1(其中k∈N∗)之间插入2k个3,使它们和原数列的项构成一个新的数列{cn}.记Tn为数列{cn}的前n项和,求T36的值.
    19.(本小题12分)
    已知函数f(x)=aln(x+2)−12x2(a∈R).
    (1)讨论函数f(x)的单调性;
    (2)若函数f(x)有两个极值点,
    (i)求实数a的取值范围;
    (ii)证明:函数f(x)有且只有一个零点.
    答案简析
    1.B
    【简析】解:由等差数列的通项公式可得:a5=a2+3d=3+3×5=18.
    故选:B.
    2.A
    【简析】解:函数f(x)可导,
    则limΔx→0f(1−Δx)−f(1)Δx=−lim△x→0f(1−△x)−f(1)−△x=−f′(1)=18,
    所以f′(1)=−18
    故选:A.
    3.A
    【简析】解:由题意,得q3=a5+a6a2+a3=−162=−8,
    则公比q=−2
    4.B
    【简析】解: (2− x)7的展开式的通项公式为 Tr+1=C7r(2)7−r(−x12)r=(−1)r27−rC7rxr2,r=0,1,2,⋯7,
    令 r2 =2,可得r=4,所以x2的系数为 (−1)427−4C74=280,
    故选B.
    5.C
    【简析】解:先给A社区选1人,有C51=5种方法,再给B社区选2人,有C42=6种,
    根据分步乘法计数原理可得共有5×6=30种选法.
    6.C
    【简析】解:设直线y=kx与曲线y=ln2x的切点为P(x0,y0),
    由y′=22x=1x,所以k=1x0=y0x0=ln2x0x0,解得x0=e2,
    所以k=1x0=2e.
    故选C.
    7.D
    【简析】解:由P(A)=34,P(BA)=P(A)P(B|A)=P(B)P(A|B),
    所以P(A|B)=P(A)P(B|A)P(B)=34×1312=12.
    故选:D.
    8.D
    【简析】解:设f(x)=lnxx(x>0),则f′(x)=1−lnxx2,
    当00;当x>e时,f′(x)<0,
    所以f(x)在(0,e)上是增函数,在(e,+∞)上是减函数.
    原不等式可化为lnxx>ln22,即f(x)>f(2),结合f(2)=f(4),可得2所以原不等式的解集为{x|29.AC
    【简析】解:因为随机变量X~N(3,1),所以E(X)=3,D(X)=1,
    选项A,Y=X+3,则E(Y)=E(X)+3=3+3=6,A正确;
    选项B,Y=3X+1,则D(Y)=32D(X)=9,B错误;
    选项C,因为2和4关于x=3对称,由正态分布的对称性可知,P(X≤2)=P(X≥4),C正确;
    选项D,由正态分布的对称性可知,1-2P(X≥4)=P(2≤X≤4)<P(0≤X≤4),D错误.
    故选AC.
    10.AB
    【简析】解:由题意可知:当x∈(−4,−3)∪(−2,2)时,f′(x)≥0;当x∈(−3,−2)∪(2,3)时,f′(x)<0;
    可知f(x)在(−4,−3),(−2,2)单调递增,在(−3,−2),(2,3)单调递减,
    可知:f(0)故AB正确;CD错误.
    11.BD
    【简析】解:A选项,二阶等差数列{cn}的前6项为:4,8,10,10,8,4,所以数列{cn+1−cn}的项为:4,2,0,−2,−4,成等差数列,公差为−2,故A错误;
    B选项,由A得cn+1−cn=6−2n,累加法得cn+1−c1=−n2+5n,所以i=120(ci+1−ci)=c21−c1=−202+5×20=−300,故B正确;
    C选项,由B选项可得cn=−n2+7n−2=−n(n−7)−2,所以c6=4>0,c7=−2<0,所以数列{cn}的前6项和最大,故C错误;
    D选项,由B选项可得cn=−n2+7n−2,所以c21=−212+7×21−2=−296,故D正确,
    故选BD.
    12.2
    【简析】解:(2x−1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0中,
    令x=1,得(2−1)5=a5+a4+a3+a2+a1+a0,
    即a0+a1+a2+a3+a4+a5=1.
    令x=0可得a0=−1,
    ∴a1+a2+a3+a4+a5=2.

    【简析】解:由E(x)=1.2,得0×p+1×0.6+2×(1−0.6−p)=1.2,解得p=0.1,
    依题意D(X)=0.1×(0−1.2)2+0.6×(1−1.2)2+0.3×(2−1.2)2=0.36.
    故答案为:0.36
    14.64%
    【简析】解:记A为事件“利率下调”,那么A即为“利率不变”,
    记B为事件“股票价格上涨”,
    依题设知P(A)=60%,P(A)=40%,P(B|A)=80%,P(B|A)=40%,
    于是P(B)=P(AB)+P(AB)=P(A)P(B|A)+P(A)P(B|A)
    =60%×80%+40%×40%=64%.
    故答案为64%.
    15.解:(1)因为f′(x)=−2f′(1)x+1+2x,令x=1解得f′(1)=1,所以f(x)=−x2+x+2lnx.
    (2)构造F(x)=f(x)−x+1=−x2+2lnx+1,F′(x)=−2x+2x=2(1−x)(1+x)x.
    当00,于是F(x)在[0,1]单调递增;
    当x≥1时,F′(x)≤0,于是F(x)在[1,+∞)单调递减,
    所以Fmax(x)=F(1)=0,于是F(x)≤F(1)=0,所以f(x)≤x−1.
    【简析】(1)求导,令x=1,代入求出f′(1)=1,即可求出f(x)的表达式;
    (2)构造F(x)=f(x)−x+1=−x2+2lnx+1,求出函数F(x)的最大值即可求解。
    16.解:(1)因为χ2=200×38×40−62×602100×100×102×98≈9.684>6.635,
    依据小概率值α=0.01的独立性检验,可以认为是否养宠物与性别有关联.
    (2)由x的取值依次为1,2,3,4,5,6,得x=3.5,i=16xi−x2=17.5,
    因为回归方程为y=0.86x+0.63,
    所以b=i=16xi−xyi−yi=16xi−x2=i=16xi−xyi−y17.5=0.86,
    所以i=16xi−xyi−y=15.05,
    所以r=i=16xi−xyi−y i=16xi−x2i=16yi−y2≈×3.61≈0.997.
    因为r>0.75,所以y与x有较强的相关性,该同归方程有价值.
    【简析】(1)首先计算χ2,再和6.635比较大小,即可判断结论;
    (2)根据回归直线方程,结合b和相关系数r的公式,即可求解相关系数.
    17.解:(1)由已知得,X~B(4,0.8),
    所以E(X)=4×0.8=3.2,
    D(X)=4×0.8×(1-0.8)=0.64.
    (2)由已知得,X服从超几何分布,
    且P(X=k)=C8kC24−kC104,k=2,3,4,
    P(X=2)=C82C24−2C104=215,
    P(X=3)=C83C24−3C104=815,
    P(X=4)=C84C24−4C104=13​​​​​​​,
    所以X的分布列为
    【简析】(1)由已知得,X~B(4,0.8),根据二项分布即可求解;
    (2)X服从超几何分布,且P(X=k)=C8kC24−kC104,k=2,3,4,即可求解.
    18.解:(1)已知数列{an}的前n项和为Sn,且Sn满足lg2(Sn+2)=n+1,
    则Sn+2=2n+1,
    则当n≥2时,an=Sn−Sn−1=2n+1−2n=2n,
    又a1=22−2=2满足上式,
    即数列{an}的通项公式为an=2n;
    (2)由(1)可知an⋅bn=n×2n,
    所以Mn=1×2+2×22+3×23+⋯+n×2n,
    所以2Mn=1×22+2×23+3×24+⋯+n×2n+1,
    则−Mn=1×2+1×22+1×23+⋯+1×2n−n×2n+1
    =2(1−2n)1−2−n×2n+1=(1−n)×2n+1−2,
    所以Mn=(n−1)×2n+1+2;
    (3)在任意相邻两项ak与ak+1(其中k∈N∗)之间插入2k个3,
    使它们和原数列的项构成一个新的数列{bn},
    则a5为数列{bn}的第21+22+23+24+5=34项,
    则b35=b36=3,
    则T36=31×3+a1+a2+a3+a4+a5=93+2×(1−25)1−2=155.
    【简析】(1)由已知可得Sn+2=2n+1,然后求数列{an}的通项公式即可;
    (2)利用错位相减法求和即可;
    (3)由题意可得a5为数列{bn}的第34项,则b35=b36=3,然后结合等比数列的求和公式求解即可.
    19.解:(1)因为f′(x)=ax+2−x=−(x+1)2+a+1x+2,
    (i)当a≤−1时,f(x)在(−2,+∞)单调递减;
    (ii)当−1当x∈(−2,− a+1−1),f′(x)<0.
    当x∈(− a+1−1, a+1−1),f′(x)>0.
    当x∈( a+1−1,+∞),f′(x)<0.
    所以f(x)在(−2,− a+1−1)单调递减,在(− a+1−1, a+1−1)单调递增,在( a+1−1,+∞)单调递减;
    (iii)当a≥0时,f(x)在(−2, a+1−1)单调递增,( a+1−1,+∞)单调递减.
    (2) (i)由(1)知−1(ii)由(1)知f(x)极大值为f( a+1−1),
    因为f( a+1−1)=aln( a+1+1)−12( a+1−1)2<0,
    又因为f(e4a−2)=4−12(e4a−2)2>0.
    所以函数f(x)有且只有一个零点.
    【简析】(1)求出f′(x),然后对a进行分类讨论,利用导数和单调性的关系即可求解;
    (2)(i)由(1)即可求解;
    (ii)求出极大值,结合零点存在定理即可判断.X
    0
    1
    2
    P
    p
    0.6
    q
    成年男性
    成年女性
    合计
    养宠物
    38
    60
    98
    不养宠物
    62
    40
    102
    合计
    100
    100
    200
    α
    0.10
    0.05
    0.01

    2.706
    3.841
    6.635
    X
    2
    3
    4
    P
    215
    815
    13
    相关试卷

    2023-2024学年山东省淄博市高二下学期期末考试数学试题(含答案): 这是一份2023-2024学年山东省淄博市高二下学期期末考试数学试题(含答案),共7页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    山东省淄博市2023-2024学年高二下学期期末考试数学试题: 这是一份山东省淄博市2023-2024学年高二下学期期末考试数学试题,文件包含高二数学试题参考答案阅卷用docx、高二数学试题2024625pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    山东省淄博市2023-2024学年度高二下学期期末数学试题: 这是一份山东省淄博市2023-2024学年度高二下学期期末数学试题,共4页。试卷主要包含了 在的展开式中,含的项的系数为, 若则, 不等式的解集是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map