所属成套资源:2024年高二数学暑期培优讲义 +课后巩固练习(2份打包,原卷版+教师版)
2024年高二数学暑期培优讲义 第10讲 圆锥曲线中范围与最值问题(2份打包,原卷版+教师版)
展开
这是一份2024年高二数学暑期培优讲义 第10讲 圆锥曲线中范围与最值问题(2份打包,原卷版+教师版),文件包含2024年高二数学暑期培优讲义第10讲圆锥曲线中范围与最值问题学生版doc、2024年高二数学暑期培优讲义第10讲圆锥曲线中范围与最值问题教师版doc、2024年高二数学暑期培优讲义第10讲圆锥曲线中范围与最值问题学生版pdf、2024年高二数学暑期培优讲义第10讲圆锥曲线中范围与最值问题教师版pdf等4份学案配套教学资源,其中学案共30页, 欢迎下载使用。
例1 已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆C上,以PF1为直径的圆E:x2+eq \b\lc\(\rc\)(\a\vs4\al\c1(y-\f(1,4)))2=eq \f(49,16)过焦点F2.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为A,与x轴不垂直的直线l交椭圆C于M,N两点(M,N与A点不重合),且满足AM⊥AN,点Q为MN的中点,求直线MN与AQ的斜率之积的取值范围.
教师备选
过双曲线Γ:eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0)的左焦点F1的动直线l与Γ的左支交于A,B两点,设Γ的右焦点为F2.
(1)若△ABF2可以是边长为4的正三角形,求此时Γ的标准方程;
(2)若存在直线l,使得AF2⊥BF2,求Γ的离心率的取值范围.
思维升华 圆锥曲线中取值范围问题的五种常用解法
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.
(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.
(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.
(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.
(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.
跟踪训练1 (2022·南昌模拟)已知圆M:x2+(y﹣1)2=8,点N(0,﹣1),P是圆M上一动点,若线段PN的垂直平分线与PM交于点Q.
(1)求点Q的轨迹方程C;
(2)若直线l与曲线C交于A,B两点,D(1,0),直线DA与直线DB的斜率之积为eq \f(1,6),求直线l的斜率的取值范围.
题型二 最值问题
例2 已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-1,\f(\r(2),2))),短轴长为2.
(1)求椭圆C的标准方程;
(2)过点(0,2)的直线l(直线l不与x轴垂直)与椭圆C交于不同的两点M,N,且O为坐标原点.求△MON的面积的最大值.
教师备选
设椭圆Γ:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(3),2),点A,B,C分别为Γ的上、左、右顶点,且|BC|=4.
(1)求Γ的标准方程;
(2)点D为直线AB上的动点,过点D作l∥AC,设l与Γ的交点为P,Q,求|PD|·|QD|的最大值.
思维升华 圆锥曲线中最值的求法
(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.
(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.
跟踪训练2 如图所示,点A,B分别是椭圆eq \f(x2,36)+eq \f(y2,20)=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
课时精练
1.已知双曲线eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0),O为坐标原点,离心率e=2,点M(eq \r(5),eq \r(3))在双曲线上.
(1)求双曲线的方程;
(2)如图,若直线l与双曲线的左、右两支分别交于点Q,P,且eq \(OP,\s\up6(→))·eq \(OQ,\s\up6(→))=0,求|OP|2+|OQ|2的最小值.
2.已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,离心率为eq \f(\r(2),2),P是椭圆C上的一个动点,当P是椭圆C的上顶点时,△F1PF2的面积为1.
(1)求椭圆C的方程;
(2)设斜率存在的直线PF2,与椭圆C的另一个交点为Q.若存在T(t,0),使得|TP|=|TQ|,求t的取值范围.
3.已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)过点A(0,﹣2),以四个顶点围成的四边形面积为4eq \r(5).
(1)求椭圆E的标准方程;
(2)过点P(0,﹣3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=﹣3于点M,N,若|PM|+|PN|≤15,求k的取值范围.
4.已知抛物线E:x2=﹣2y,过抛物线上第四象限的点A作抛物线的切线,与x轴交于点M.过M作OA的垂线,交抛物线于B,C两点,交OA于点D.
(1)求证:直线BC过定点;
(2)若eq \(MB,\s\up6(→))·eq \(MC,\s\up6(→))≥2,求|AD|·|AO|的最小值.
相关学案
这是一份高考数学一轮复习第8章第10课时圆锥曲线中的范围、最值问题学案,共17页。
这是一份2024年高考数学第一轮复习精品导学案第71讲 圆锥曲线中的最值问题(学生版)+教师版,共2页。
这是一份专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案,共40页。学案主要包含了微点综述,强化训练,名师点睛等内容,欢迎下载使用。