|试卷下载
搜索
    上传资料 赚现金
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(原卷版)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版).docx
    • 解析
      专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(解析版)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版).docx
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)01
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)02
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)03
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)01
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)02
    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版)

    展开
    这是一份专题2.5 二次函数与线段最值面积最值综合应用(四大题型)(含答案)2023-2024学年九年级数学上册《重难点题型 高分突破》(人教版),文件包含专题25二次函数与线段最值面积最值综合应用四大题型原卷版2023-2024学年九年级数学上册《重难点题型高分突破》人教版docx、专题25二次函数与线段最值面积最值综合应用四大题型解析版2023-2024学年九年级数学上册《重难点题型高分突破》人教版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    【题型1 线段差最大问题】
    【题型2 线段和最小】
    【题型3 周长最值问题】
    【题型4 求面积最值】
    【题型1 线段差最大问题】
    【典例1】(2023•汝南县一模)如图,已知抛物线过点O(0,0),A(5,5),其对称轴为x=2.
    (1)求该抛物线的解析式;
    (2)若点B是抛物线对称轴上的一点,且点B在第一象限.
    ①当△OAB的面积为15时,求点B的坐标;
    ②在①的条件下,P是抛物线上的动点,当PA﹣PB取得最大值时,求点P的坐标.
    【变式1-1】(秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.
    (1)求此抛物线的解析式;
    (2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?
    【变式1-2】(连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.
    (1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;
    (2)当BP﹣CP的值最大时,求点P的坐标;
    【题型2 线段和最小】
    【典例2】(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.
    (1)求该抛物线的表达式;
    (2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;
    【变式2-1】(2023•河南三模)如图,抛物线交x轴于点A,B,交y轴于点C,连接AC,点A的坐标为(﹣2,0),抛物线的对称轴为直线x=1.
    (1)求抛物线的表达式和顶点坐标;
    (2)在直线x=1上找一点P,使PA+PC的和最小,并求出点P的坐标;

    【变式2-2】(2022秋•常德期末)如图,二次函数y=ax2﹣2x+c(a≠0)的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C,顶点为D.
    (1)求二次函数的解析式;
    (2)点P是抛物线的对称轴上一个动点,连接BP,CP,当BP+CP的长度最小时,求出点P的坐标;
    【变式2-3】(2023•中宁县二模)如图,抛物线y=x2+bx+c的对称轴为直线x=2,与x轴交于A,B两点,与y轴交于C点,且A点坐标为(﹣1,0).
    (1)求抛物线的解析式及顶点D的坐标;
    (2)点M(a,0)是x轴上的一个动点,当CM+DM的值最小时,求a的值.
    【变式2-4】(2023•太康县模拟)如图,抛物线y=ax2+bx+2交y轴于点C,交x轴于A(﹣1,0),B(4,0)两点,作直线BC.
    (1)求抛物线的函数表达式;
    (2)在抛物线的对称轴上找一点P,使PC+PA的值最小,求点P的坐标;
    【题型3 周长最值问题】
    【典例3】(2023•张家界)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c的图象与x轴交于点A(﹣2,0)和点B(6,0)两点,与y轴交于点C(0,6).点D为线段BC上的一动点.
    (1)求二次函数的表达式;
    (2)如图1,求△AOD周长的最小值;
    【变式3-1】(2023•盘锦三模)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
    (1)求抛物线的函数表达式;
    (2)设P为对称轴上一动点,求△APC周长的最小值;

    【变式3-2】(2023春•民乐县校级月考)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(1,0)两点,与y轴交于点C,连接AC,点P是AC上方抛物线上一点.
    (1)求抛物线的解析式;
    (2)在抛物线对称轴有一点Q,使△QBC的周长最小,求Q的坐标;
    【变式3-3】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,交y轴于点C.
    (1)求抛物线的函数解析式;
    (2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM周长的最小值;若不存在,请说明理由.
    【题型4 求面积最值】
    【典例4】(2023•利津县一模)综合与实践
    如图,抛物线y=2x2﹣4x﹣6与x轴交于A,B两点,且点A在点B的左侧,与y轴交于点C,点D是抛物线上的一动点.
    (1)求A,B,C三点的坐标;
    (2)如图2,当点D在第四象限时,连接BD,CD和BC,得到△BCD,当△BCD的面积最大时,求点D的坐标;
    【变式4-1】(2022秋•金华期末)已知抛物线y=﹣x2﹣bx+c的图象与x轴交于点A(﹣3,0)和点C,与y轴交于点B(0,3).
    (1)求抛物线的解析式;
    (2)设点P为抛物线的对称轴上一动点,当△PBC的周长最小时,求点P的坐标;
    (3)在第二象限的抛物线上,是否存在一点Q,使得△ABQ的面积最大?若存在,求出点Q的坐标;若不存在,请说明理由.
    【变式4-2】(2023•娄底模拟)如图1,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接AC、BC.
    (1)求二次函数的解析式;
    (2)若点P是抛物线在第一象限上一动点,连接PB、PC,当△PBC的面积最大时,求出点P的坐标;
    【变式4-3】(2023•晋中模拟)综合与探究
    如图,抛物线y=﹣x2+bx+c的顶点为D(1,4),与x轴交于A和B两点,交y轴于点C.
    (1)求抛物线的函数表达式及点A,B、C的坐标;
    (2)如图1,点P是直线BC上方的抛物线上的动点,当△BCP面积最大时,求点P的横坐标;
    【变式4-4】(2022秋•南川区期末)如图1,在平面直角坐标系中,二次函数y=ax2+bx﹣3(a≠0)的图象与x轴于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是直线BC下方抛物线上一动点.
    (1)求这个二次函数的解析式;
    (2)当动点P运动到什么位置时,使四边形ACPB的面积最大,求出此时四边形ACPB的面积最大值和P的坐标;
    【变式4-5】(2022秋•渝北区期末)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点.
    (1)求抛物线的函数表达式;
    (2)点P是直线BC下方抛物上一动点,连接PB,PC,求△PBC面积的最大值以及此时点P的坐标;
    【变式4-6】(2023春•青秀区校级期末)如图所示,已知抛物线y=ax2+bx+5(a<0)与x轴交于点A(﹣1,0)和点B(5,0),与y轴交于点C.

    (1)求抛物线的解析式;
    (2)点P为抛物线上的一个动点,且在直线BC上方,试求出△BCP面积的最大值;
    【变式4-7】(2023•仁怀市模拟)如图1,在平面直角坐标系中,直线y=﹣x+4交两坐标轴于B、C两点,二次函数y=ax2+bx+c图象经过A,B,C三点且A(﹣1,0).
    (1)求二次函数的解析式.
    (2)在抛物线的对称轴上是否存在点P?使得PA+PC的长度最短.若存在,求出点P的坐标;若不存在,请说明理由.
    (3)在直线上方抛物线上是否存在点Q?使得△QBC的面积有最大值.若存在,求出点Q的坐标及此时△QBC的面积;若不存在,请说明理由.
    【变式4-8】(2023•德惠市校级模拟)如图,在平面直角坐标系中,一次函数y=kx+b与二次函数y=﹣x2+mx+n交于点A(3,0),B(0,3)两点.
    (1)求一次函数y=kx+b和二次函数y=﹣x2+mx+n的解析式.
    (2)点P是二次函数图象上一点,且位于直线AB上方,过点P作y轴的平行线,交直线AB于点Q,当△PAB面积最大时,求点P的坐标.
    【变式4-9】(2023•资兴市二模)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线L交抛物线于点C(2,m).
    (1)求抛物线的解析式;
    (2)若点P是直线AC下方抛物线y=x2+bx+c的一个动点,当△PAC面积最大时,求点P的坐标及△PAC面积最大值.

    【变式4-10】(2023•顺德区模拟)如图,抛物线y=﹣x2+bx+c交直线y=﹣x+4于坐标轴上B,C两点,交x轴于另一点A,连接AC.
    (1)求抛物线的解析式;
    (2)点D为线段BC上一点,过点D作直线l∥AC,交x轴于点E.
    连接AD,求△ADE面积的最大值;
    相关试卷

    专题04 二次函数的最值问题专训-2023-2024学年九年级数学上册重难点高分突破(浙教版): 这是一份专题04 二次函数的最值问题专训-2023-2024学年九年级数学上册重难点高分突破(浙教版),文件包含专题04二次函数的最值问题专训原卷版docx、专题04二次函数的最值问题专训解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。

    最新中考数学重难点与压轴题型训练(讲义) 专题18 二次函数中线段、周长、面积最值问题(重点突围): 这是一份最新中考数学重难点与压轴题型训练(讲义) 专题18 二次函数中线段、周长、面积最值问题(重点突围),文件包含专题18二次函数中线段周长面积最值问题重点突围原卷版docx、专题18二次函数中线段周长面积最值问题重点突围解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    专题2.5 二次函数与线段最值面积最值综合应用(四大题型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版): 这是一份专题2.5 二次函数与线段最值面积最值综合应用(四大题型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版),文件包含专题25二次函数与线段最值面积最值综合应用四大题型原卷版docx、专题25二次函数与线段最值面积最值综合应用四大题型解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map