苏科版八年级下册9.3 平行四边形练习
展开
这是一份苏科版八年级下册9.3 平行四边形练习,共233页。
必考点1
平行四边形中边的关系运用
1.(2022秋·浙江宁波·八年级校考期末)如图,在平行四边形ABCD中,AB=6,BC=4,∠A=120°,E是AB的中点,点F在平行四边形ABCD的边上,若△AEF为等腰三角形,则EF的长为_____.
2.(2022秋·黑龙江哈尔滨·九年级统考期中)如图,已知▱ABCD中,AF垂直平分DC,且AF=DC,点E为AF上一点,连接BE、CE,若∠CEF=2∠ABE,AE=2,则AD的长为______.
3.(2022秋·陕西宝鸡·九年级统考期中)如图,在△ABC中,AB=BC=10,AC=12,D是BC边上任意一点,连接AD,以AD,CD为邻边作平行四边形ADCE,连接DE,则DE长的最小值为___________.
4.(2022春·江西吉安·八年级统考期末)如图,在▱ABCD中,∠DS2,则S3>S1;③若S3=2S1,则S4=2S2;④如果P点在对角线BD上,则S1:S4=S2:S3;⑤S1−S2=S3−S4,则P点一定在对角线BD上.
4.(2022秋·上海·七年级校考期末)小明在学习了中心对称图形以后,想知道平行四边形是否为中心对称图形.于是将一张平行四边形纸片平放在一张纸板上,在纸板上沿四边画出它的初始位置,并画出平行四边形纸片的对角线,用大头针钉住对角线的交点.将平行四边形纸片绕着对角线的交点旋转180°后,平行四边形纸片与初始位置的平行四边形恰好重合.通过上述操作,小明惊喜地发现平行四边形是中心对称图形,对角线的交点就是对称中心.请你利用小明所发现的平行四边形的这一特征完成下列问题:
(1)如图①,四边形ABCD是平行四边形,对角线AC、BD相交于点O.过点O的直线l与边AB、CD分别相交于点M、N,四边形AMND的面积与平行四边形ABCD的面积之比为___________;
(2)如图②,这个图形是由平行四边形ABCD与平行四边形ECGF组成的,点E在边CD上,且B、C、G在同一直线上.
①请画出一条直线把这个图形分成面积相等的两个部分(不要求写出画法,但请标注字母并写出结论);
②延长GF与边AD的延长线交于点K,延长FE与边AB交于点H.联结EB、EK、BK,如图③所示,当四边形AHED的面积为10,四边形CEFG的面积为2时,求三角形EBK的面积.
5.(2022秋·吉林长春·八年级统考期末)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.
例如:如图1,在△ABC中,如果AD是AB边上的中线,那么△ACD和△ABD是“朋友三角形”,则有S△ACD=S△ABD.
应用:如图2,在矩形ABCD中,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOE和△AOB是“朋友三角形”.
(2)如图3,在四边形ABCD中,∠ADC=90°,AD//BC,AD=DC=8,BC=12,点G在BC上,点E在AD上,DG与CE交于点F,GF=DF.
①求证:△DFE和△DFC是“朋友三角形”;
②连接AF,若△AEF和△DEF是“朋友三角形”,求四边形ABGF的面积.
(3)在△ABC中,∠B=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的14,则△ABC的面积是________(请直接写出答案).
6.(2022秋·重庆大足·九年级统考期末)如图1,两个等腰直角三角形△ABC、△EDC的顶点C重合,其中∠ABC=∠EDC=90°,连接AE,取AE中点F,连接BF,DF.
(1)如图1,当B、C、D三个点共线时,请猜测线段BF、FD的数量关系,并证明;
(2)将△EDC绕着点C顺时针旋转一定角度至图2位置,根据“AE中点F”这个条件,想到取AC与EC的中点G、H,分别与点F相连,再连接BG,DH,最终利用△BGF≌△FHD(SAS)证明了(1)中的结论仍然成立.请你思考当△EDC绕着点C继续顺时针旋转至图3位置时,(1)中的结论是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;
(3)连接BD,在△EDC绕点C旋转一周的过程中,△BFD的面积也随之变化.若AC=52,CB=32,请直接写出△BFD面积的最大值.
必考点3
平行四边形中的角度转换
1.(2022春·江西新余·八年级新余四中校考期中)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABE是等边三角形:②△ABC≌△EAD;③AD=AF:④S△ABE=S△CDF;⑤S△ABE=S△CEF其中正确的是( )
A.①②③B.①④⑤C.①②⑤D.②③④
2.(2022春·江苏南京·八年级统考期中)如图,在等边三角形ABC中,AB=4,P为AC上一点(与点A、C不重合),连接BP,以PA、PB为邻边作平行四边形PADB,则PD的取值范围是_______.
3.(2022秋·辽宁朝阳·九年级校考期中)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF
;④EA平分∠GEF.其中正确的是________.
4.(2022春·浙江·八年级期末)如图,四边形ABCD中,AB//CD,∠B=∠D,点E为BC延长线上一点,连接AE,AE交CD于H.∠DCE的平分线交AE于G.
(1)求证:四边形ABCD为平行四边形;
(2)如图1,若AB=2AD=10,H为CD的中点,HE=6,求AC的长;
(3)如图2,若∠BAC=∠DAE
①∠AGC=2∠CAE,求∠CAE的度数;
②∠AGC=n∠CAE,∠CAE=_____°(用含有n的式子表示)
5.(2022春·浙江杭州·八年级统考期末)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
(1)求证:BE⊥CF;
(2)若AB=a,CF=b,求BE的长.
6.(2022春·湖北武汉·七年级统考期末)在平面直角坐标系中,点 A(a,6),B(4,b),
(1)若 a,b 满足 (a b 5)2 2a−b−1 0 ,
①求点 A,B 的坐标;
②点 D 在第一象限,且点 D 在直线 AB 上,作 DC⊥x 轴于点 C,延长 DC 到 P 使 得 PC=DC,若△PAB 的面积为 10,求 P 点的坐标;
(2)如图,将线段 AB 平移到 CD,且点 C 在 x 轴负半轴上,点 D 在 y 轴负半轴上, 连接 AC 交 y 轴于点 E,连接 BD 交 x 轴于点 F,点 M 在 DC 延长线上,连 EM,3∠MEC+∠CEO=180°,点 N 在 AB 延长线上,点 G 在 OF 延长线上,∠NFG= 2∠NFB,请探究∠EMC 和∠BNF 的数量关系,给出结论并说明理由.
必考点4
平行四边形中勾股定理的运用
1.(2022春·浙江温州·八年级统考期中)如图,一副三角板如图1放置,AB=CD=6,顶点E重合,将△DEC绕其顶点E旋转,如图2,在旋转过程中,当∠AED=75°,连接AD、BC,这时△ADE的面积是______.
2.(2022春·广西贵港·八年级统考期中)如图,四边形ABCD为菱形,AB=3,∠ABC=60°,点M为BC边上一点且BM=2CM,过M作MN∥AB交AC,AD于点O,N,连接BN.若点P,Q分别为OC,BN的中点,则PQ的长度为________.
3.(2022春·江苏南京·八年级校考期中)已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.
(1)求证:四边形GEHF是平行四边形.
(2)若AB=4,BC=7,当四边形GEHF是矩形时BD的长为 .
4.(2022秋·辽宁辽阳·九年级校考期中)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为平面内一点,以CD为腰在CD右侧作等腰Rt△CDE,且∠CDE=90°,过点B作BF∥DE,且BF=DE,连接BD,DF,EF.
(1)如图①,当点D在AC边上时,直接写出线段AF与AD的关系为 ;
(2)将图①中的等腰Rt△CDE绕点C逆时针旋转α0°CE−CB,
当C、B、E三点共线时(点E在CB的延长线上时),
BE=CE-CB,
综上所述BE≥CE-CB=5-3=2,
即BE≥2,
∴BE的最小值为2,
当BE=2时,BF2+BD2−BC2=4,
故答案为:4.
【点睛】本题考查了矩形的性质、旋转的性质、平行四边形的性质和勾股定理的应用,解决本题的关键是对以上性质的掌握是否熟练.
5.(2022春·辽宁沈阳·八年级统考期末)等边△ABC中,AB=14.平面内有一点D,BD=6,AD=10, 则CD的长为_____.
【答案】219或16
【分析】分点D在△ABC的内部和点D在△ABC的外部两种情况,先利用等边三角形的性质可得BE=7,CE=73,再根据勾股定理可得BF=337,从而可得DG、CG的长,然后在Rt△CDG中,利用勾股定理即可得.
【详解】由题意,分以下两种情况:
(1)如图1,点D在△ABC的内部
过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,作DG⊥CE于点G
则四边形DFEG是矩形
∴DG=EF,EG=DF
∵ △ABC是等边三角形,AB=14
∴BE=12AB=7,CE=32AB=73
设BF=x,则AF=AB−BF=14−x
在Rt△ADF中,DF2=AD2−AF2=100−(14−x)2
在Rt△BDF中,DF2=BD2−BF2=36−x2
则100−(14−x)2=36−x2
解得x=337
即BF=337
∴DG=EF=BE−BF=167,EG=DF=36−x2=1573
∴CG=CE−EG=73−1573=3473
在Rt△CDG中,CD=DG2+CG2=(167)2+(3473)2=219
(2)如图2,点D在△ABC的外部
过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,作DG⊥CE,交CE延长线于点G
同理可得:CE=73,DG=EF=167,EG=DF=1573
∴CG=CE+EG=73+1573=6473
在Rt△CDG中,CD=DG2+CG2=(167)2+(6473)2=16
综上,CD的长为219或16
故答案为:219或16.
【点睛】本题考查了矩形的判定与性质、等边三角形的性质、勾股定理等知识点,依据题意,正确分两种情况讨论,并通过作辅助线,构造直角三角形是解题关键.
6.(2022秋·天津·九年级校考期末)在平面直角坐标系中,矩形OABC,O为原点,A3,0,B3,4,C0,4,将△OBC绕点B逆时针旋转,点O,C旋转后的对应点为O′,C′.
(1)如图(1),当∠CBC′=30°时,求C′的坐标;
(2)如图(2),当点O′恰好落在x轴上时,O′C′与AB交于点D.
①此时DB与DO′是否相等,说明理由;
②求点D的坐标;
(3)求△AO′C′面积的最大值.(直接写出答案即可)
【答案】(1)C′3−332,52
(2)①DB=DO′;②D3,78
(3)14
【分析】(1)如图①中,过点C′作C′H⊥BC于点H.解直角三角形求出BH,CH,可得结论;
(2)①此时DB与DO′相等,证明∠DBO′=∠DO′B即可;
②设DB=DO′=x,再利用勾股定理构建方程求出x即可;
(3)如图③中,当点C′值AB的延长线上时,△AO′C′的面积最大.
【详解】(1)如图①中,过点C′作C′H⊥BC于点H.
∵四边形OABC是矩形,B(3,4),
∴AB=OC=4,BC=3,
在Rt△ BC′H中,∠BHC′=90°,∠HBC′=30°,
∴HC′=12BC′=32,BH=332,
∴CH=3−332,
∴C′3−332,52;
(2)①结论:DB=DO′.
理由:∵BO=BO′,BA⊥OO′,
∴∠OBA=∠ABO′,
∵AB∥OC,
∴∠ABO=∠COB=∠BO′C′,
∴∠DBO′=∠DO′B,
∴DB=DO′;
②∵BO=BO′,BA⊥OO′,
∴OA=AO′=3,
设BD=DO′=x,
在Rt△ADO′中,AD2+AO′2=O′D2,
∴(4−x)2+32=x2,
∴x=258,
∴AD=4−258=78,
∴D(3,78).
(3)如图③中,当点C′值AB的延长线上时,此时点A到O′C′的距离最大,即△AO′C′的面积最大.
△AO′C′的面积的最大值=12×7×4=14.
【点睛】本题属于四边形综合题,考查了矩形的性质,解直角三角形,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
必考点12
菱形中的全等三角形的构造
1.(2022春·山东济南·八年级统考期末)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上一点,且CD=DE,连接BE,分别交AC,AD于点F、G,连接OG,则下列结论:
①OG=12AB;②S四边形ODGF>S△ABF;③由点A、B、D、E构成的四边形是菱形;④S△ACD=4S△BOG,其中正确的结论是( )
A.①②B.①②③C.①③④D.②③④
【答案】C
【分析】①由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ABD的中位线,得出OG=12AB,①正确;
③先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;
②连接FD,由等边三角形的性质和角平分线的性质得F到△ABD三边的距离相等,则S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,则S四边形ODGF=S△ABF,②错误;即可得出结论.
④∵连接CG,由O、G分别是AC,AD的中点,得到S△AOG=S△COG,S△ACG=S△DCG,则S△ACD=4S△AOG,再由S△AOG=S△BOG,得到S△ACD=4S△BOG,故④正确;
【详解】∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
∠AGB=∠DGE∠BAG=∠EDGAB=DE,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ABD的中位线,
∴OG=12AB,故①正确;
∵AB∥CE,AB=DE,
∴四边形ABDE是平行四边形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等边三角形,
∴AB=BD=AD,∠ODC=60°,
∴平行四边形ABDE是菱形,故③正确;
∵连接CG,
∵O、G分别是AC,AD的中点,
∴S△AOG=S△COG,S△ACG=S△DCG,
∴S△ACD=4S△AOG,
∵OG∥AB,
∴S△AOG=S△BOG,
∴S△ACD=4S△BOG,故④正确;
连接FD,如图:
∵△ABD是等边三角形,AO平分∠BAD,BG平分∠ABD,
∴F到△ABD三边的距离相等,
∴S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,
∴S四边形ODGF=S△ABF,故②错误;
正确的是①③④,
故选C.
【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理以及三角形面积等知识,综合运用以上知识是解题的关键.
2.(2022秋·浙江绍兴·八年级统考期末)如图,AB∥CD,AC平分∠BAD,BD平分∠ADC,AC和BD交于点E,F,G分别是线段AB和线段AC上的动点,且AF=CG,若DE=1,AB=2,则DF+DG的最小值为______.
【答案】22
【分析】先根据AC平分∠BAD,BD平分∠ADC,AB∥CD证明四边形ABCD是菱形.在AC上取点B',使AB'=AB,连接FB',作点D关于AB的对称点D',连接D'F、DD'.作BH⊥CD于点H,作BM⊥DD'于点M,则△B'AF≌△DCG(SAS),得出B'F=DG,所以DF+DG=D'F+B'F,当B'、F、D'三点在同一直线上时,DF+DG=D'F+B'F取最小值为B'D'.再根据勾股定理求出B'D'即可.
【详解】解:连接BC,
∵AC平分∠BAD,BD平分∠ADC,AB∥CD,
∴∠DAC=∠BAC,∠ADB=∠CDB,∠AED=180°-180°÷2=90°,
∵AB∥CD,
∴∠DCA=∠BAC,
∴∠DCA=∠DAC,
∴DA=DC,
同理:DA=BA,
∴DC=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵DA=DC,
∴四边形ABCD是菱形.
如图.在AC上取点B',使AB'=AB,连接FB',作点D关于AB的对称点D',连接D'F、DD'.
作B'H⊥CD于点H,作B'M⊥DD'于点M.
∴DF=D'F,
∵AF=CG,∠B'AF=∠DCG,AB'=AB=CD,
∴△B'AF≌DCG(SAS),
∴B'F=DG,
∴DF+DG=D'F+B'F,
∴当B'、F、D'三点在同一直线上时,DF+DG=D'F+B'F取最小值为B'D'.
∵DE=1,AD=AB=2,
∴∠DAE=30°,∠ADE=60°,
∴AC=3AD=23,CB'=23-2,
∴B'H=12B'C=3-1,CH=3B'H=3-3,
∴DH=DC-CH=2-(3-3)=3−1,
∵四边形DHB′M是矩形
∴DM=B'H=3-1,MB′=DH=3−1,
∴D'M=DD'-DM=3AD-DM=23-(3-1)=3+1,
∴D'B'=MB′2+MD′2=(3−1)2+(3+1)2=22.
即DF+DG的最小值为22.
故答案为:22.
【点睛】本题考查了线段之和最小值问题,作辅助线推出△B'AF≌△DCG是解题的关键.
3.(2022春·黑龙江哈尔滨·八年级统考期末)在平行四边形ABCD中,∠BAD的平分线交边BC于点E,交DC的延长线于点F.
(1)如图1,求证:CE=CF;
(2)如图2,FG∥BC,FG=EC,连接DG、EG,当∠ABC=120°时,求证:∠BDG=60°;
(3)如图3,在(2)的条件下,当BE=2CE,AE=43时,求线段BD的长.
【答案】(1)见解析
(2)见解析
(3)BD=27
【分析】(1)根据角平分线的性质可得∠1=∠2,然后再运用平行四边形的性质说明∠2=∠3,∠1=∠F,进一步说明∠3=∠F,最后运用等边对等角即可证明结论;
(2)延长AB、FG交于点H,连接DH,可证得四边形AHFD是平行四边形,四边形AHFD是菱形,推出△FDH和△ADH都是等边三角形,再证明△DFG≌△DHB(SAS),得出∠FDG=∠HDB,进而证得结论;
(3)如图3,连接DE,根据平行四边形性质和角平分线性质可得∠BAE=∠AEB=180°−∠ABC2=30°,过点B作BM⊥AE于点M,可得EM=12AE=23,利用勾股定理求得AB=CD=BE=4,过点D作DN⊥BC于点N,结合勾股定理即可解答.
(1)
明:如图1:∵AF是∠BAD平分线.
∴∠1=∠2
∵ABCD是平行四边形.
∴AD∥BC,AB∥CD
∴∠2=∠3,∠1=∠F,
∴∠3=∠F,
∴CE=CF.
(2)
证明:如图2;延长AB、FG交于点H,连接DH,
∴FG∥CE,CE∥AD,
∴FH∥BC∥AD,
∵AH∥DF,
∴四边形AHFD是平行四边形,
∵∠DFA=∠FAB=∠DAF,
∴DA=DF,
∴四边形AHFD是菱形,
∴FD=FH,AD=AH,
∵∠ABC=120°,
∴∠DFH=∠DAH=60°,
∴△FDH和△ADH都是等边三角形,
∴∠DFG=∠DHB=∠FDH=60°,FD=HD,
∵四边形BCFH是平行四边形,
∴BH=CF,
∵FG=CE,CE=CF,
∴FG=BH,
在△DFG和△DHB中,
FG=BH∠GFD=∠BHDFD=HD
∴△DFG≌△DHB(SAS),
∴∠FDG=∠HDB,
∴∠BDG=∠HDB+∠HDG=∠FDG+∠HDG=∠FDH=60°.
(3)
解:如图3,连接DE,
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠DAE=∠AEB,∠DCB=180°-∠ABC=60°,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB=180°−∠ABC2=30°
过点B作BM⊥AE于点M
∴EM=12AE=23
在Rt△BME中
∵∠BEM=30°
∴BM=12BE
∵BE2−BM2=EM2
∴BE2−(12BE)2=(23)2,解得:BE=4
∵BE=2CE
∴CE=2
过点D作DN⊥BC于点N,则∠NDC=90°-∠DCB=30°
∴CN=12CD=2=CE
∴点N与点E重合
∴∠DEC=90°
∴DE2=CD2−CE2=42−22=12
∴BD=DE2+BE2=12+16=27 .
【点睛】本题主要考查平行四边形的判定与性质、菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、含30°的直角三角形性质、勾股定理等知识点,正确地作出辅助线是解答本题的关键.
4.(2022春·山东德州·八年级统考期末)如图1,在平面直角坐标系中,直线y=−34x+b分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),四边形ABCD是正方形.
(1)求b的值和点D的坐标;
(2)点M是线段AB上的一个动点(点A、B除外).
①如图2,将△BMC沿CM折叠,点B的对应点是点E,连接ME并延长交AD边于点F,问△AMF的周长是否发生变化?若不变,求出其值;若变化,请说明理由;
②点P是x轴上一个动点,Q是坐标平面内一点,探索是否存在一个点P,使得以A、B、P、Q为顶点的四边形是菱形?若不存在,请说明理由;若存在,请直接写出点Q的坐标.
【答案】(1)b的值为6,点D的坐标为(14,8)
(2)①△AMF的周长不变,△AMF的周长为20;②存在,点Q的坐标为(0,−6)或(−10,6)或(10,6)或(254,6)
【分析】(1)将点A(8,0)代入y=−34x+b,即可求出b的值,从而即得出直线AB的解析式为y=−34x+6,进而即得出A(0,6).过点D作DH⊥x轴于点H,由正方形的性质结合题意利用“AAS”易证△AOB≅△DHA,得出DH=OA=8,OH=OA+AH=14,即得出D(14,8);
(2)①由折叠和正方形的性质可知BM=EM,CD=CE=4,∠CDF=∠CEF=90°,即易证△CDF≅△CEF(HL),得出DF=EF.再由△AMF的周长=AM+ME+EF+AF=AM+BM+DF+AF=AB+AD,结合勾股定理即可求出答案;②分类讨论ⅰ当AP为菱形的对角线时,ⅱ当AQ为菱形的对角线时和ⅲ当AB为菱形的对角线时,根据菱形的性质结合图形即可求出答案.
【详解】(1)解:将点A(8,0)代入y=−34x+b,得0=−34×8+b,
解得:b=6,
∴直线AB的解析式为y=−34x+6,
当x=0,时y=6,
∴A(0,6),
∴OB=6,OA=8.
如图,过点D作DH⊥x轴于点H,
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°.
∵∠BAO+∠ABO=90°,
∴∠ABO=∠DAH.
又∵∠AOB=∠DHA=90°,
∴△AOB≅△DHA(AAS),
∴DH=OA=8,AH=OB=6,
∴OH=OA+AH=14,
∴D(14,8);
(2)解:①由折叠的性质可知BM=EM,BC=CE=4,∠CBM=∠CEM=90°,
∴CD=CE=4,∠CDF=∠CEF=90°,
又∵CF=CF,
∴△CDF≅△CEF(HL)
∴DF=EF.
∵△AMF的周长=AM+MF+AF,MF=ME+EF,
∴△AMF的周长=AM+ME+EF+AF=AM+BM+DF+AF=AB+AD.
∵OB=6,OA=8,
∴AB=OA2+OB2=10,
∴△AMF的周长=10+10=20,
故△AMF的周长不变,且为20;
②存在以A、B、P、Q为顶点的四边形是菱形,理由如下:
设P(t,0),Q(x,y).
分类讨论:ⅰ当AP为菱形的对角线时,如图菱形ABP1Q1,此时AB=BP1.
∵xA+xP=xQyB+yQ=yABP1=OB2+OP12,
即8+t=x6+y=010=62+t2,
解得:x1=16y1=−6t1=8(舍),x2=0y2=−6t2=−8;
即此时Q(0,-6);
ⅱ当AQ为菱形的对角线时,如图菱形ABQ2P2和ABQ4P4,此时AB=AP2和AB=AP4.
同理可得:8+x=ty=610=8−t,
解得:x1=−10y1=6t1=−2,x2=10y2=6t2=18;
即此时Q(-10,6)或(10,6);
ⅲ当AB为菱形的对角线时,如图菱形AQ3BP3,此时AP3=BP3.
同理可得8=t+xy=636+t2=8−t,
解得:x=254y=6t=74;
即此时Q(254,6);
综上可知点Q的坐标为(0,−6)或(−10,6)或(10,6)或(254,6)时,以A、B、P、Q为顶点的四边形是菱形.
【点睛】本题考查正方形的性质,三角形全等的判定和性质,折叠的性质,勾股定理以及菱形的判定和性质等知识.正确的作出辅助线并利用数形结合的思想是解题关键.
5.(2022春·河南鹤壁·八年级鹤壁市外国语中学校考期末)如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过点O且垂直于AC,分别与边AD,BC交于点F,E.
(1)求证:四边形AECF为菱形;
(2)若AD=3,CD=2,且∠ADC=45°,直接写出四边形AECF的面积.
【答案】(1)见解析
(2)54
【分析】(1)根据平行四边形、平行线的性质得出OA=OC,OB=OD,AD∥BC,进而得出∠FDO=∠EBO,由全等三角形的判定(角边角)得出△FDO≌△EBO,再利用全等三角形的性质得出OF=OE,最后根据菱形的判定及已知EF⊥AC即可证明.
(2)设辅助线CG⊥AD于点G,利用勾股定理得出CG的值,由(1)已知四边形AECF为菱形,根据菱形的性质设AF=t,则FG=2−t,CF=t,利用勾股定理建立等式求解得出t值,最后利用菱形的性质及三角形面积公式求解即可.
(1)
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,
∴OA=OC,OB=OD,AD∥BC.
∴∠FDO=∠EBO.
∵{∠FDO=∠EBO,OD=OB,∠DOF=∠BOE,
∴△FDO≌△EBO.
∴OF=OE.
∵EF⊥AC,且EF,AC互相平分,
∴四边形AECF为菱形.
(2)
如图,作CG⊥AD于点G,
∵AD=3,CD=2,且∠ADC=45°,∠CGD=∠CGF=90°,
∴∠ADC=∠GCD=45°.
∴CG=GD,△CGD是等腰直角三角形.
∵CG2+GD2=CD2,即2CG2=2,
∴CG=GD=1,AG=AD−GD=3−1=2.
∵由(1)已知四边形AECF是菱形,
∴AF=CF.
设AF=t,则FG=2−t,CF=t,
∵FG2+CG2=CF2,即(2−t)2+1=t2,
∴解得t=54.
∴AF=54.
∴S菱形AECF=2S△AFE=2×12AF⋅CG=2×12×54×1=54.
【点睛】本题考查菱形的判定与性质,平行四边形的性质,全等三角形的判定与性质,勾股定理等的理解与综合应用能力.对角线互相垂直平分的四边形是菱形.菱形四条边都相等.两角及其夹边分别相等的三角形全等.平行四边形的对边平行且相等;平行四边形的两条对角线互相平分.两全等三角形的对应边相等,对应角相等.灵活利用菱形的判定与性质,全等三角形的判定与性质,根据勾股定理建立等式关系是解本题的关键.
6.(2022春·江苏淮安·八年级统考期末)如图,平行四边形ABCD中,AB⊥AC,AC=2AB.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转β°0
相关试卷
这是一份初中数学苏科版八年级下册9.3 平行四边形课时训练,共233页。
这是一份初中数学沪科版七年级下册第6章 实数6.2 实数课时训练,共40页。
这是一份初中数学苏科版八年级下册9.3 平行四边形巩固练习,共234页。