终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    沪科版七年级数学下册精品特训专题8.5整式乘法与因式分解中的求值问题专项训练(50道)(原卷版+解析)

    立即下载
    加入资料篮
    沪科版七年级数学下册精品特训专题8.5整式乘法与因式分解中的求值问题专项训练(50道)(原卷版+解析)第1页
    沪科版七年级数学下册精品特训专题8.5整式乘法与因式分解中的求值问题专项训练(50道)(原卷版+解析)第2页
    沪科版七年级数学下册精品特训专题8.5整式乘法与因式分解中的求值问题专项训练(50道)(原卷版+解析)第3页
    还剩24页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版七年级数学下册精品特训专题8.5整式乘法与因式分解中的求值问题专项训练(50道)(原卷版+解析)

    展开

    这是一份沪科版七年级数学下册精品特训专题8.5整式乘法与因式分解中的求值问题专项训练(50道)(原卷版+解析),共27页。
    专题8.5 整式的乘法与因式分解中的求值问题专项训练(50道)【沪科版】考卷信息:本套训练卷共50题,选择题15道,填空题15道,解答题20道,题型针对性较高,覆盖面广,选题有深度,综合性较强!一.选择题(共15小题)1.(2022•金华校级开学)已知2x﹣3y=3,3y﹣4z=5,x+2z=8,则代数式3x2﹣12z2的值是(  )A.32 B.64 C.96 D.1282.(2022•瑶海区校级二模)已知a、b不同的两个实数,且满足ab>0、a2+b2=4﹣2ab,当a﹣b为整数时,ab的值为(  )A.34或12 B.1 C.34 D.14或343.(2022春•高新区校级期末)若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,则a的值为(  )A.1 B.5 C.﹣1 D.﹣54.(2022•安庆模拟)已知a,b为不同的两个实数,且满足ab>0,a2+b2=9﹣2ab.当a﹣b为整数时,ab的值为(  )A.54或2 B.94或54 C.14或2 D.94或25.(2022春•宁远县月考)已知a=2021x+2020,b=2021x+2021,c=2021x+2022,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为(  )A.0 B.1 C.2 D.36.(2022春•汝州市校级月考)若(5x+2)(3﹣x)=﹣5x2+kx+p,则代数式(k﹣p)2的值为(  )A.98 B.49 C.14 D.77.(2022秋•江油市期末)已知x2+x=1,那么x4+2x3﹣x2﹣2x+2023的值为(  )A.2020 B.2021 C.2022 D.20238.(2022•安顺模拟)已知m2=4n+a,n2=4m+a,m≠n,则m2+2mn+n2的值为(  )A.16 B.12 C.10 D.无法确定9.(2022秋•博兴县期末)已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为(  )A.﹣1 B.0 C.3 D.610.(2022秋•鲤城区校级月考)若(x+p)(x+q)=x2+mx+36,p、q为正整数,则m的最大值与最小值的差为(  )A.25 B.24 C.8 D.7411.(2022春•渠县校级期中)若a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2﹣ab﹣ac﹣bc的值为(  )A.0 B.1 C.2 D.312.(2022春•裕安区校级期中)已知4x=18,8y=3,则52x﹣6y的值为(  )A.5 B.10 C.25 D.5013.(2022春•碑林区校级期中)已知(a+b)2=29,(a﹣b)2=13,则ab的值为(  )A.42 B.16 C.8 D.414.(2022春•包河区期中)已知(2022﹣m)(2022﹣m)=2021,那么(2022﹣m)2+(2022﹣m)2的值为(  )A.4046 B.2023 C.4042 D.404315.(2022秋•淅川县期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(  )A.25 B.20 C.15 D.10二.填空题(共15小题)16.(2022春•临渭区期末)已知:a﹣b=1,a2+b2=25,则(a+b)2的值为    .17.(2022春•鹤城区期末)若(am+1bn+2)•(a2n﹣1b2n)=a5b3,则m﹣n的值为    .18.(2022春•通川区期末)已知(x﹣m)(x2﹣2x+n)​展开后得到多项式为x3﹣(m+2)x2+x+5​,则n2+4m2​的值为    .19.(2022春•通川区期末)已知2x﹣3y﹣2=0​,则9x÷27y​的值为    .20.(2022春•萍乡月考)若[(a﹣2)2]3=(a﹣2)(a﹣2)a(a≠2),则a的值为    .21.(2022•南山区模拟)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为    .22.(2022春•长兴县期中)已知6x=192,32y=192,则(﹣6)(x﹣1)(y﹣1)+2的值为    .23.(2022春•江阴市期中)若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为   .24.(2022•高密市二模)已知x+y=3,xy=﹣2,则代数式x2y+xy2的值为    .25.(2022秋•西城区校级期中)若a5•(ay)3=a17,则y=   ,若3×9m×27m=311,则m的值为    .26.(2022春•诸暨市期末)已知x≠y,且满足两个等式x2﹣2y=20212,y2﹣2x=20212,则x2+2xy+y2的值为    .27.(2022•双流区模拟)若a+b=﹣1,则3a2+6ab+3b2﹣5的值为   .28.(2022春•简阳市 期中)已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为   .29.(2022春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为   .30.(2022春•西城区期末)(1)若x2+y2=10,xy=3,那么代数式x﹣y的值为   .(2)若x2+xy+x=14,y2+xy+y=28,那么代数式x+y的值为   .三.解答题(共20小题)31.(2022秋•长沙月考)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.32.(2022•肇源县二模)已知x2﹣4x﹣3=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.33.(2022春•合肥期末)已知(a+b)2=9,(a﹣b)2=5,求下列各式的值:(1)ab.(2)a2+b2.34.(2022春•宝应县校级月考)(1)若10x=3,10y=2,求代数式103x+4y的值.(2)已知:3m+2n﹣6=0,求8m•4n的值.35.(2022秋•黄石期末)已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.36.(2022春•铁岭期中)已知5m=2,5n=4,求52m﹣n和25m+n的值.37.(2022秋•兰考县期末)已知(x+y)2=1,(x﹣y)2=49,求x2+y2与xy的值.38.(2022春•定远县期中)先化简,再求值,若x=13,y=−12,求(2x+3y)2﹣(2x﹣y)(2x+y)的值.39.(2022春•东乡区期中)已知:a为有理数,a3+a2+a+1=0,求1+a+a2+a3+…+a2012的值.40.(2022春•郫都区校级期中)(1)若(x2+px−13)(x2﹣3x+q)的积中不含x项与x3项,求解以下问题:①求p,q的值;②代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.(2)若多项式2x4﹣3x3+ax2+7x+b能被x2+x﹣2整除,求ab.41.(2022春•白银区校级月考)已知ax•ay=a4,ax÷ay=a(1)求x+y与x﹣y的值.(2)求x2+y2的值.42.(2022春•鄞州区校级期末)若(x﹣3)(x+m)=x2+nx﹣15,求n2−m28n+5的值.43.(2022春•姜堰区校级月考)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.44.(2022秋•崇川区校级月考)已知a+b=10,ab=6,求:(1)a2+b2的值;(2)a3b﹣2a2b2+ab3的值.45.(2022春•西湖区校级月考)阅读下列材料:已知a2+a﹣3=0,求a2(a+4)的值.解:∵a2=3﹣a,∴a2(a+4)=(3﹣a)(a+4)=3a+12﹣a2﹣4a=﹣a2﹣a+12∵a2+a=3,∴﹣(a2+a)+12=﹣3+12=9∴a2(a+4)=9根据上述材料的做法,完成下列各小题:(1)已知a2﹣a﹣10=0,求2(a+4)(a﹣5)的值;(2)已知x2﹣x﹣1=0,求x3﹣2x+1的值;(3)已知(999﹣a)(998﹣a)=1999,求(999﹣a)2+(998﹣a)2的值.(4)已知x2+4x﹣1=0,求代数值2x4+8x3﹣4x2﹣8x+1的值.46.(2022秋•丛台区校级月考)若(x2+px+8)(x2﹣3x﹣q)的展开式中不含有x2和x3项,求p、q的值.47.(2022秋•东城区校级期中)在(x2+ax+b)(2x2﹣3x﹣1)的积中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.48.(2022春•新华区校级期中)(1)先化简,再求值:2b2+(a+b)(a﹣2b)﹣(a﹣b)2,其中a=﹣3,b=12.(2)已知ab=﹣3,a+b=2.求下列各式的值:①a2+b2; ②a3b+2a2b2+ab3; ③a﹣b.49.(2022春•泉山区校级期中)基本事实:若am=an(a>0,且a≠1,m、n都是正整数),则m=n.试利用上述基本事实解决下面的两个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值; ②如果2x+2+2x+1=24,求x的值.50.(2022•青岛模拟)“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)例:分解因式:x2﹣2xy﹣8y2解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:6x2﹣7xy+2y2=   x2﹣6xy+8y2﹣5x+14y+6=   (2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y. 专题8.5 整式的乘法与因式分解中的求值问题专项训练(50道)【沪科版】考卷信息:本套训练卷共50题,选择题15道,填空题15道,解答题20道,题型针对性较高,覆盖面广,选题有深度,综合性较强!一.选择题(共15小题)1.(2022•金华校级开学)已知2x﹣3y=3,3y﹣4z=5,x+2z=8,则代数式3x2﹣12z2的值是(  )A.32 B.64 C.96 D.128【分析】首先利用第一第二等式可以分别求出x、z的值,然后代入所求代数式即可求解.【解答】解:∵2x﹣3y=3①,3y﹣4z=5②,∴①+②得:2x﹣4z=8,∴x﹣2z=4③,而x+2z=8④,③+④得2x=12,∴x=6,把x=6代入③得:z=1,∴3x2﹣12z2=3×62﹣12×12=96.故选:C.2.(2022•瑶海区校级二模)已知a、b不同的两个实数,且满足ab>0、a2+b2=4﹣2ab,当a﹣b为整数时,ab的值为(  )A.34或12 B.1 C.34 D.14或34【分析】先将a2+b2=4﹣2ab变形为(a+b)2=4,然后把a﹣b用含a+b的式子表示出来,再根据a﹣b为整数进行讨论后得出ab的值.【解答】解:∵a2+b2=4﹣2ab,∴(a+b)2=4.∵(a﹣b)2=(a+b)2﹣4ab,∴(a﹣b)2=4﹣4ab.∴4﹣4ab≥0.∵a≠b.∴a﹣b≠0.∴4﹣4ab>0.解得,ab<1.∵ab>0.∴0<ab<1.∴0<4﹣4ab<4.∵a﹣b为整数,∴4﹣4ab为平方数.∴4﹣4ab=1.解得ab=34.故选:C.3.(2022春•高新区校级期末)若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,则a的值为(  )A.1 B.5 C.﹣1 D.﹣5【分析】先分解,再对比求出a.【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.∴a=1.故选A.4.(2022•安庆模拟)已知a,b为不同的两个实数,且满足ab>0,a2+b2=9﹣2ab.当a﹣b为整数时,ab的值为(  )A.54或2 B.94或54 C.14或2 D.94或2【分析】利用完全平方公式分析求解.【解答】解:∵a2+b2=9﹣2ab,∴a2+b2+2ab=9,∴(a+b)2=9,∴(a+b)2=(a﹣b)2+4ab,即ab=9−(a−b)24,由ab>0,则9−(a−b)24>0,∴(a﹣b)2<9,又∵a﹣b为整数,∴(a﹣b)2=1或(a﹣b)2=4,当(a﹣b)2=1时,(a+b)2=(a﹣b)2+4ab,9=1+4ab,解得ab=2;当(a﹣b)2=4时,(a+b)2=(a﹣b)2+4ab,9=4+4ab,解得ab=54;综上,ab的值为54或2,故选:A.5.(2022春•宁远县月考)已知a=2021x+2020,b=2021x+2021,c=2021x+2022,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为(  )A.0 B.1 C.2 D.3【分析】先把原多项式扩大2倍得2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(c﹣b)2+(c﹣a)2,代入a﹣b=﹣1,c﹣b=1,c﹣a=2,计算即可.【解答】解:∵a=2021x+2020,b=2021x+2021,c=2021x+2022,∴a﹣b=﹣1,c﹣b=1,c﹣a=2,∴2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(c﹣b)2+(c﹣a)2=1+1+4=6,∴a2+b2+c2﹣ab﹣bc﹣ac=3;故选:D.6.(2022春•汝州市校级月考)若(5x+2)(3﹣x)=﹣5x2+kx+p,则代数式(k﹣p)2的值为(  )A.98 B.49 C.14 D.7【分析】根据多项式乘多项式的法则把等式的左边进行计算后,与等式的右边对比,即可求出k和p的值,进而即可得出答案.【解答】解:∵(5x+2)(3﹣x)=﹣5x2+kx+p,∴15x﹣5x2+6﹣2x=﹣5x2+kx+p,∴﹣5x2+13x+6=﹣5x2+kx+p,∴k=13,p=6,∴(k﹣p)2=(13﹣6)2=72=49,故选:B.7.(2022秋•江油市期末)已知x2+x=1,那么x4+2x3﹣x2﹣2x+2023的值为(  )A.2020 B.2021 C.2022 D.2023【分析】利用因式分解法将原式进行分解,再整体代入即可求解.【解答】解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2023=x4+x3+x3﹣x2﹣2x+2023=x2(x2+x)+x3﹣x2﹣2x+2023=x2+x3﹣x2﹣2x+2023=x(x2+x)﹣x2﹣2x+2023=x﹣x2﹣2x+2023=﹣x2﹣x+2023=﹣(x2+x)+2023=﹣1+2023=2022.故选:C.8.(2022•安顺模拟)已知m2=4n+a,n2=4m+a,m≠n,则m2+2mn+n2的值为(  )A.16 B.12 C.10 D.无法确定【分析】将m2=4n+a与n2=4m+a相减可得(m﹣n)(m+n+4)=0,根据m≠n,可得m+n+4=0,即m+n=﹣4,再将m2+2mn+n2变形为(m+n)2,整体代入即可求解.【解答】解:将m2=4n+a与n2=4m+a相减得m2﹣n2=4n﹣4m,(m+n)(m﹣n)=﹣4(m﹣n),(m﹣n)(m+n+4)=0,∵m≠n,∴m+n+4=0,即m+n=﹣4,∴m2+2mn+n2=(m+n)2=(﹣4)2=16.故选:A.9.(2022秋•博兴县期末)已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为(  )A.﹣1 B.0 C.3 D.6【分析】根据分解因式的分组分解因式后整体代入即可求解.【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.10.(2022秋•鲤城区校级月考)若(x+p)(x+q)=x2+mx+36,p、q为正整数,则m的最大值与最小值的差为(  )A.25 B.24 C.8 D.74【分析】利用多项式乘多项式的法则,把等式的左边进行运算,再根据条件进行分析即可.【解答】解:(x+p)(x+q)=x2+(p+q)x+pq,∵(x+p)(x+q)=x2+mx+36,∴p+q=m,pq=36,∵36=4×9,则p+q=13,36=1×36,则p+q=37,36=2×18,则p+q=20,36=3×12,则p+q=15,36=6×6,则p+q=12,∴m的最大值为37,最小值为12.其差为25,故选:A.11.(2022春•渠县校级期中)若a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2﹣ab﹣ac﹣bc的值为(  )A.0 B.1 C.2 D.3【分析】将多项式a2+b2+c2﹣ab﹣bc﹣ca转化为几个完全平方式的和,再将a=1999x+2000,b=1999x+2001,c=1999x+2002分别代入求值.【解答】解:∵2(a2+b2+c2﹣ab﹣bc﹣ca)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ca=(a﹣b)2+(a﹣c)2+(b﹣c)2=(1999x+2000﹣1999x﹣2001)2+(1999x+2000﹣1999x﹣2002)2+(1999x+2001﹣1999x﹣2002)2=1+4+1=6.∴a2+b2+c2﹣ab﹣bc﹣ca=6×12=3.故选:D.12.(2022春•裕安区校级期中)已知4x=18,8y=3,则52x﹣6y的值为(  )A.5 B.10 C.25 D.50【分析】利用幂的乘方的法则对已知的条件进行整理,再代入到所求的式子中进行运算即可.【解答】解:∵4x=18,8y=3,∴22x=18,23y=3,∴(23y)2=32,即26y=9,∴22x﹣6y=22x26y=189=2,∴2x﹣6y=1,∴52x﹣6y=51=5.故选:A.13.(2022春•碑林区校级期中)已知(a+b)2=29,(a﹣b)2=13,则ab的值为(  )A.42 B.16 C.8 D.4【分析】利用完全平方公式进行变形即可.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2﹣(a﹣b)2=4ab,∴29﹣13=4ab,∴ab=4.故选:D.14.(2022春•包河区期中)已知(2022﹣m)(2022﹣m)=2021,那么(2022﹣m)2+(2022﹣m)2的值为(  )A.4046 B.2023 C.4042 D.4043【分析】利用完全平方公式变形即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴a2+b2=(a﹣b)2+2ab.∴(2022﹣m)2+(2022﹣m)2=[(2022﹣m)﹣(2022﹣m)]2+2×(2022﹣m)(2022﹣m)=4+2×2021=4046.故选:A.15.(2022秋•淅川县期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(  )A.25 B.20 C.15 D.10【分析】根据已知条件得到x2﹣2x﹣5=0,将其代入整理后的d的代数式.【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.二.填空题(共15小题)16.(2022春•临渭区期末)已知:a﹣b=1,a2+b2=25,则(a+b)2的值为  49 .【分析】根据完全平方公式解决此题.【解答】解:∵a﹣b=1,a2+b2=25,∴(a﹣b)2=a2+b2﹣2ab=25﹣2ab=1.∴2ab=24.∴(a+b)2=a2+b2+2ab=25+24=49.故答案为:49.17.(2022春•鹤城区期末)若(am+1bn+2)•(a2n﹣1b2n)=a5b3,则m﹣n的值为  4 .【分析】先利用单项式乘单项式法则计算(am+1bn+2)•(a2n﹣1b2n),再根据等式得到指数间关系,最后求出m﹣n.【解答】解:∵(am+1bn+2)•(a2n﹣1b2n)=am+1+2n﹣1bn+2+2n=am+2nb3n+2,∴am+2nb3n+2=a5b3.∴m+2n=5①,3n=1②.∴①﹣②,得m﹣n=5﹣1=4.故答案为:4.18.(2022春•通川区期末)已知(x﹣m)(x2﹣2x+n)​展开后得到多项式为x3﹣(m+2)x2+x+5​,则n2+4m2​的值为  21 .【分析】根据多项式乘多项式的乘法法则,求得(x﹣m)(x2﹣2x+n)=x3﹣(m+2)x2+(n+2m)x﹣mn,推断出n+2m=1,﹣mn=5.再根据完全平方公式解决此题.【解答】解:(x﹣m)(x2﹣2x+n)=x3﹣2x2+nx﹣mx2+2mx﹣mn=x3﹣(m+2)x2+(n+2m)x﹣mn.由题意得,(x﹣m)(x2﹣2x+n)​=x3﹣(m+2)x2+x+5​.∴n+2m=1,﹣mn=5.∴(n+2m)2=n2+4m2+4mn=1.∴n2+4m2=1﹣4mn=1+20=21.故答案为:21.19.(2022春•通川区期末)已知2x﹣3y﹣2=0​,则9x÷27y​的值为  9 .【分析】先逆用幂的乘方,把9x÷27y​化为同底数幂的除法的形式,再利用同底数幂的除法法则运算,最后转化已知代入求值.【解答】解:9x÷27y​=(32)x÷(33)y=32x÷33y=32x﹣3y.∵2x﹣3y﹣2=0​,∴2x﹣3y=2.∴原式=32=9.故答案为:9.​20.(2022春•萍乡月考)若[(a﹣2)2]3=(a﹣2)(a﹣2)a(a≠2),则a的值为  1或3或5 .【分析】根据幂的运算法则进行解答便可.【解答】解:∵[(a﹣2)2]3=(a﹣2)(a﹣2)a(a≠2),∴(a﹣2)6=(a﹣2)a+1,∴a﹣2=1或a﹣2=﹣1或a+1=6,∴a=3或a=1或a=5,故答案为:1或3或5.21.(2022•南山区模拟)已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b的值为  ﹣31 .【分析】直接提取公因式(3x﹣7),进而合并同类项得出即可.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.22.(2022春•长兴县期中)已知6x=192,32y=192,则(﹣6)(x﹣1)(y﹣1)+2的值为  ﹣216 .【分析】将6x=192变形为6x﹣1=32,32y=192变形为32y﹣1=6;利用幂的乘方,同底数幂的乘法,同底数幂的除法的逆运算法则运算后整体代入即可.【解答】解:∵6x=192,∴(6x)y=192y.即6xy=192y①.∵32y=192,∴(32y)x=192x.即32xy=192x②.①,②的两边分别相乘得:6xy•32xy=192y•192x.∴(6×32)xy=192x+y.∴192xy=192x+y.∴xy=x+y.∴(﹣6)(x﹣1)(y﹣1)+2=(﹣6)(x﹣1)(y﹣1)×(﹣6)2=(﹣6)xy﹣(x+y)+1×36=(﹣6)×36=﹣216.故答案为:﹣216.23.(2022春•江阴市期中)若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为 3 .【分析】已知等式右边利用多项式乘多项式法则计算,再利用多项式相等的条件求出m与n的值,即可求出m﹣n的值.【解答】解:∵(x+3)(x+n)=x2+nx+3x+3n=x2+(n+3)x+3n,∴m=n+3−15=3n,解得:m=﹣2,n=﹣5,则m﹣n=﹣2+5=3,故答案为:3.24.(2022•高密市二模)已知x+y=3,xy=﹣2,则代数式x2y+xy2的值为  ﹣6 .【分析】先提取公因式分解因式,在把x+y=3,xy=﹣2,代入原式计算即可.【解答】解:∵x2y+xy2=xy(x+y),把x+y=3,xy=﹣2,代入,原式=3×(﹣2)=﹣6,故答案为:﹣6.25.(2022秋•西城区校级期中)若a5•(ay)3=a17,则y= 4 ,若3×9m×27m=311,则m的值为  2 .【分析】先利用幂的乘方法则和同底数幂的乘法法则计算a5•(ay)3、3×9m×27m,再根据底数与指数分别相等时幂也相等得方程,求解即可.【解答】解:∵a5•(ay)3=a5×a3y=a5+3y,∴a5+3y=a17.∴5+3y=17.∴y=4.∵3×9m×27m=3×32m×33m=31+5m,∴31+5m=311.∴1+5m=11.∴m=2.故答案为:4;2.26.(2022春•诸暨市期末)已知x≠y,且满足两个等式x2﹣2y=20212,y2﹣2x=20212,则x2+2xy+y2的值为  4 .【分析】联立方程,通过因式分解求出x+y的值,再将x2+2xy+y2因式分解得(x+y)2,将x+y的值代入求解.【解答】解:x2−2y=20212①y2−2x=20212②,①﹣②得x2﹣y2+2x﹣2y=0,(x+y)(x﹣y)+2(x﹣y)=0,(x﹣y)(x+y+2)=0,∵x≠y,∴x+y+2=0,即x+y=﹣2,∴x2+2xy+y2=(x+y)2=4.故答案为:4.27.(2022•双流区模拟)若a+b=﹣1,则3a2+6ab+3b2﹣5的值为 ﹣2 .【分析】由a+b=﹣1,把33a2+6ab+3b2﹣5的前三项利用提取公因式法、完全平方公式分解因式,再整体代入即可.【解答】解:∵a+b=﹣1,∴3a2+6ab+3b2﹣5=3(a+b)2﹣5=3×(﹣1)2﹣5=3﹣5=﹣2.故答案为:﹣2.28.(2022春•简阳市 期中)已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为 10 .【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.29.(2022春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为 3 .【分析】根据已知条件可得a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,再将a2+b2+c2﹣ab﹣bc﹣ca变形为12[(a﹣b)2+(b﹣c)2+(c﹣a)2],然后代入计算即可.【解答】解:∵a=2009x+2007,b=2009x+2008,c=2009x+2009,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣bc﹣ca=12(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=12[(a﹣b)2+(b﹣c)2+(c﹣a)2]=12(1+1+4)=3.故答案为3.30.(2022春•西城区期末)(1)若x2+y2=10,xy=3,那么代数式x﹣y的值为 ±2 .(2)若x2+xy+x=14,y2+xy+y=28,那么代数式x+y的值为 6或﹣7 .【分析】(1)利用完全平方公式列出关系式,将已知等式代入计算,开方即可求出x﹣y的值;(2)已知两等式左右两边相加,利用完全平方公式变形,即可求出x+y的值.【解答】解:(1)∵x2+y2=10,xy=3,∴(x﹣y)2=x2﹣2xy+y2=10﹣6=4,则x﹣y=±2;(2)∵x2+xy+x=14,y2+xy+y=28,∴x2+xy+x+y2+xy+y=42,即(x+y)2+(x+y)﹣42=0,分解因式得:(x+y﹣6)(x+y+7)=0,则x+y=6或﹣7.故答案为:(1)±2;(2)6或﹣7三.解答题(共20小题)31.(2022秋•长沙月考)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.【分析】(1)由已知得出(a+b+c)2=36,再由(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc,将已知条件代入即可解出abc=6;(2)由(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2),将已知条件及(1)中推得的式子代入,即可求出a2b2+b2c2+a2c2的值,由(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2),即可解出答案.【解答】解:(1)∵a+b+c=6∴(a+b+c)2=36∴a2+b2+c2+2(ab+bc+ac)=36∵a2+b2+c2=14∴ab+bc+ac=11∵a3+b3+c3=36∴(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc=6×(14﹣11)=18∴36﹣3abc=18∴abc=6.(2)∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2)∴121=a2b2+b2c2+a2c2+12(a+b+c)∴a2b2+b2c2+a2c2=121﹣12×6=49∴(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴a4+b4+c4=142﹣2×49=98∴a4+b4+c4的值为98.32.(2022•肇源县二模)已知x2﹣4x﹣3=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【分析】求出x2﹣4x=3,算乘法,合并同类项,最后代入求出即可.【解答】解:∵x2﹣4x﹣3=0,∴x2﹣4x=3,∴(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3×3+9=18.33.(2022春•合肥期末)已知(a+b)2=9,(a﹣b)2=5,求下列各式的值:(1)ab.(2)a2+b2.【分析】(1)利用完全平方公式得a2+2ab+b2=9,a2﹣2ab+b2=5,然后把两式相减即可得到ab的值;(2)把ab=1代入上面容易一个等式中可得到a2+b2值.【解答】解:(1)∵(a+b)2=9,(a﹣b)2=5,∴a2+2ab+b2=9①,a2﹣2ab+b2=5②,①﹣②得4ab=4,∴ab=1;(2)把ab=1代入①得a2+2+b2=9,所以a2+b2=7.34.(2022春•宝应县校级月考)(1)若10x=3,10y=2,求代数式103x+4y的值.(2)已知:3m+2n﹣6=0,求8m•4n的值.【分析】(1)直接利用同底数幂的乘法运算法则将原式变形求出答案;(2)直接利用同底数幂的乘法运算法则将原式变形求出答案.【解答】解:(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.35.(2022秋•黄石期末)已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.【分析】已知等式利用完全平方公式化简,相加减即可求出所求式子的值.【解答】解:∵(x+y)2=x2+2xy+y2=25①,(x﹣y)2=x2﹣2xy+y2=1②,∴①+②得:2(x2+y2)=26,即x2+y2=13;①﹣②得:4xy=24,即xy=6.36.(2022春•铁岭期中)已知5m=2,5n=4,求52m﹣n和25m+n的值.【分析】原式利用幂的乘方与积的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵5m=2,5n=4,∴52m﹣n=(5m)2÷5n=4÷4=1;25m+n=(5m)2•(5n)2=4×16=64.37.(2022秋•兰考县期末)已知(x+y)2=1,(x﹣y)2=49,求x2+y2与xy的值.【分析】已知等式利用完全平方公式化简,相加减即可求出所求式子的值.【解答】解:∵(x+y)2=x2+y2+2xy=1①,(x﹣y)2=x2+y2﹣2xy=49②,∴①+②得:2(x2+y2)=50,即x2+y2=25;①﹣②得:4xy=﹣48,即xy=﹣12.38.(2022春•定远县期中)先化简,再求值,若x=13,y=−12,求(2x+3y)2﹣(2x﹣y)(2x+y)的值.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=13,y=−12时,原式=﹣2+2.5=0.5.39.(2022春•东乡区期中)已知:a为有理数,a3+a2+a+1=0,求1+a+a2+a3+…+a2012的值.【分析】首先将1+a+a2+a3+…+a2012变形为:1+a(1+a+a2+a3)+a5(1+a+a2+a3)…+a2009(1+a+a2+a3),然后将a3+a2+a+1=0代入即可求得答案.【解答】解:∵a3+a2+a+1=0,∴1+a+a2+a3+…+a2012,=1+a(1+a+a2+a3)+a5(1+a+a2+a3)…+a2009(1+a+a2+a3),=1.40.(2022春•郫都区校级期中)(1)若(x2+px−13)(x2﹣3x+q)的积中不含x项与x3项,求解以下问题:①求p,q的值;②代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.(2)若多项式2x4﹣3x3+ax2+7x+b能被x2+x﹣2整除,求ab.【分析】(1)①利用条件中积不含x项与x3项,将积算出来后,令相应的项系数为0即可;②利用第①问中的结果,代入求值;(2)多项式整除问题,把商假设出来,转化为多项式的乘法进行计算.【解答】解:(1)①原式=x4+(p﹣3)x3+(q﹣3p−13)x2+(1+pq)x−13q,∵积中不含x项与x3项,∴1+pq=0p−3=0,∴p=3q=−13.②由①得pq=﹣1,原式=4p2−13+(pq)2012q2=36−13+19=3579.(2)设2x4﹣3x3+ax2+7x+b=(x2+x﹣2)(2x2+mx+n)=2x4+(m+2)x3+(m+n﹣4)x2+(n﹣2m)x﹣2n,∴m+2=−3m+n−4=an−2m=7−2n=b,解得a=﹣12,b=6,∴ab=﹣72.41.(2022春•白银区校级月考)已知ax•ay=a4,ax÷ay=a(1)求x+y与x﹣y的值.(2)求x2+y2的值.【分析】(1)根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;同底数幂的除法法则:底数不变,指数相减可得答案;(2)首先计算x、y的值,然后可得x2+y2的值.【解答】解:(1)∵ax•ay=a4,ax÷ay=a,∴x+y=4,x﹣y=1;(2)x+y=4x−y=1,解得:x=2.5y=1.5,x2+y2=8.5.42.(2022春•鄞州区校级期末)若(x﹣3)(x+m)=x2+nx﹣15,求n2−m28n+5的值.【分析】首先把)(x﹣3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解.【解答】解:(x﹣3)(x+m)=x2+(m﹣3)x﹣3m=x2+nx﹣15,则m−3=n−3m=−15解得:m=5n=2.n2−m28n+5=22−528×2+5=−1.43.(2022春•姜堰区校级月考)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.【分析】原式利用平方差公式分解,变形后将已知等式代入计算即可求出值.【解答】解:∵4m+n=90,2m﹣3n=10,∴(m+2n)2﹣(3m﹣n)2=[(m+2n)+(3m﹣n)][(m+2n)﹣(3m﹣n)]=(4m+n)(3n﹣2m)=﹣900.44.(2022秋•崇川区校级月考)已知a+b=10,ab=6,求:(1)a2+b2的值;(2)a3b﹣2a2b2+ab3的值.【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【解答】解:∵a+b=10,ab=6则(1)a2+b2=(a+b)2﹣2ab=(a+b)2﹣2ab=100﹣12=88;(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab[(a+b)2﹣4ab]=6×(100﹣24)=456.45.(2022春•西湖区校级月考)阅读下列材料:已知a2+a﹣3=0,求a2(a+4)的值.解:∵a2=3﹣a,∴a2(a+4)=(3﹣a)(a+4)=3a+12﹣a2﹣4a=﹣a2﹣a+12∵a2+a=3,∴﹣(a2+a)+12=﹣3+12=9∴a2(a+4)=9根据上述材料的做法,完成下列各小题:(1)已知a2﹣a﹣10=0,求2(a+4)(a﹣5)的值;(2)已知x2﹣x﹣1=0,求x3﹣2x+1的值;(3)已知(999﹣a)(998﹣a)=1999,求(999﹣a)2+(998﹣a)2的值.(4)已知x2+4x﹣1=0,求代数值2x4+8x3﹣4x2﹣8x+1的值.【分析】(1)根据阅读材料的解答过程,利用整体代入的方法即可求解;(2)根据因式分解的提公因式法将式子变形,然后整体代入计算即可求解;(3)根据换元的思想,利用阅读材料的解答过程即可求解;(4)根据因式分解和整式的混合运算,整体代入即可求解.【解答】解:(1)∵a2﹣a﹣10=0,∴a2﹣a=10,∴2(a+4)(a﹣5)=2(a2﹣a﹣20)=2(10﹣20)=﹣20答:2(a+4)(a﹣5)的值为﹣20;(2)∵x2﹣x﹣1=0,∴x2﹣x=1,x2=x+1,∴x3﹣2x+1=x(x2﹣2)+1=x(x+1﹣2)+1=x(x﹣1)+1=x2﹣x+1=1+1=2;答:x3﹣2x+1的值为2;(3)∵(999﹣a)(998﹣a)=1999,∴设:998﹣a=x∴(x+1)x=1999,x2+x=1999,(999﹣a)2+(998﹣a)2=(x+1)2+x2=x2+2x+1+x2=2(x2+x)+1=2×1999+1=3999答:(999﹣a)2+(998﹣a)2的值为3999.(4)∵x2+4x﹣1=0,∴x2+4x=1,x2=1﹣4x,∴2x4+8x3﹣4x2﹣8x+1=2x2(x2+4x﹣2)﹣8x+1=2(1﹣4x)(1﹣2)﹣8x+1=﹣2+8x﹣8x+1=﹣1.答:代数值2x4+8x3﹣4x2﹣8x+1的值为﹣1.46.(2022秋•丛台区校级月考)若(x2+px+8)(x2﹣3x﹣q)的展开式中不含有x2和x3项,求p、q的值.【分析】直接利用多项式乘法将原式变形,进而得出p,q的等式,即可得出答案.【解答】解:(x2+px+8)(x2﹣3x﹣q)=x4﹣3x3﹣qx2+px3﹣3px2﹣pqx+8x2﹣24x﹣8q=x4+(﹣3+p)x3+(﹣q﹣3p+8)x2+(﹣pq﹣24)x﹣8q,展开式中不含有x2和x3项,∴−3+p=0−q−3p+8=0∴解得:p=3q=−1.47.(2022秋•东城区校级期中)在(x2+ax+b)(2x2﹣3x﹣1)的积中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.【分析】原式利用多项式乘以多项式法则计算得到结果,根据x3项的系数为﹣5,x2项的系数为﹣6即可求出a与b的值.【解答】解:(x2+ax+b)(2x2﹣3x﹣1)=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b=2x4+(2a﹣3)x3+(2b﹣3a﹣1)x2﹣(a+3b)x﹣b,根据题意得:2a﹣3=﹣5,2b﹣3a﹣1=﹣6,解得:a=﹣1,b=﹣4.48.(2022春•新华区校级期中)(1)先化简,再求值:2b2+(a+b)(a﹣2b)﹣(a﹣b)2,其中a=﹣3,b=12.(2)已知ab=﹣3,a+b=2.求下列各式的值:①a2+b2; ②a3b+2a2b2+ab3; ③a﹣b.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)①根据完全平方公式求出即可;②先分解因式,再代入求出即可;③先求出(a﹣b)2的值,再开方求出即可.【解答】解:(1)2b2+(a+b)(a﹣2b)﹣(a﹣b)2,=2b2+a2﹣2ab+ab﹣2b2﹣a2+2ab﹣b2=ab﹣b2,当a=﹣3,b=12,原式=−74;(2)①∵ab=﹣3,a+b=2,∴a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10;②∵ab=﹣3,a+b=2,∴a3b+2a2b2+ab3;=ab(a+b)2=﹣3×22=﹣12;③∵ab=﹣3,a+b=2,∴(a﹣b)2=(a+b)2﹣4ab=22﹣4×(﹣3)=16,∴a﹣b=±16=±4.49.(2022春•泉山区校级期中)基本事实:若am=an(a>0,且a≠1,m、n都是正整数),则m=n.试利用上述基本事实解决下面的两个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值; ②如果2x+2+2x+1=24,求x的值.【分析】①根据幂的乘方和同底数幂的乘法法则把原式变形为21+7x=222,得出1+7x=22,求解即可;②把2x+2+2x+1变形为2x(22+2),得出2x=4,求解即可.【解答】解:①∵2×8x×16x=2×23x×24x=21+3x+4x=21+7x=222,∴1+7x=22,∴x=3;②∵2x+2+2x+1=24,∴2x(22+2)=24,∴2x=4,∴x=2.50.(2022•青岛模拟)“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)例:分解因式:x2﹣2xy﹣8y2解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:6x2﹣7xy+2y2= (2x﹣y)(3x﹣2y) x2﹣6xy+8y2﹣5x+14y+6= (x﹣2y﹣2)(x﹣4y﹣3) (2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y.【分析】(1)结合题意画出图形,即可得出结论;(2)结合题意画出图形,即可得出结论;(3)将等式左边先用十字相乘法分解因式,再提取公因式,将右边﹣1改写成1×(﹣1)的形式,由x、y均为整数可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:(1)如图3,其中6=2×3,2=(﹣1)×(﹣2);而﹣7=2×(﹣3)+3×(﹣1);∴6x2﹣7xy+2y2=(2x﹣y)(3x﹣2y).如图4,其中1×1=1,(﹣2)×(﹣4)=8,(﹣2)×(﹣3)=6;而﹣6=1×(﹣4)+1×(﹣2),﹣5=1×(﹣3)+1×(﹣2),14=(﹣2)×(﹣3)+(﹣4)×(﹣2);∴x2﹣6xy+8y2﹣5x+14y+6=(x﹣2y﹣2)(x﹣4y﹣3).故答案为:(2x﹣y)(3x﹣2y);(x﹣2y﹣2)(x﹣4y﹣3).(2)如图5,∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在:其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,m=9×3+(﹣2)×(﹣8)=43或m=9×(﹣8)+(﹣2)×3=﹣78.故若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,m的值为43或者﹣78.(3)∵x2+3xy+2y2+2x+4y=(x+2y)(x+y)+2(x+2y)=(x+2y)(x+y+2)=﹣1=1×(﹣1),且x、y为整数,∴有x+2y=1x+y+2=−1,或x+2y=−1x+y+2=1,解得:x=−7y=4,或x=−1y=0.故当x=﹣7时,y=4;当x=﹣1时,y=0.

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map