|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题03 平面向量(教师卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
    • 学生
      专题03 平面向量(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用).docx
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)01
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)02
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)03
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)01
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)02
    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)

    展开
    这是一份专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用),文件包含专题03平面向量教师卷-十年2015-2024高考真题数学分项汇编全国通用docx、专题03平面向量学生卷-十年2015-2024高考真题数学分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。


    考点01 平面向量平行(共线)求参数
    1.(2024·上海·高考真题)已知,且,则的值为 .
    【答案】15
    【分析】根据向量平行的坐标表示得到方程,解出即可.
    【详解】,,解得.
    故答案为:15.
    2.(2021·全国乙卷·高考真题)已知向量,若,则 .
    【答案】
    【分析】利用向量平行的充分必要条件得到关于的方程,解方程即可求得实数的值.
    【详解】由题意结合向量平行的充分必要条件可得:,
    解方程可得:.
    故答案为:.
    3.(2016·全国·高考真题)已知向量,且,则___________.
    【答案】
    【分析】由向量平行的坐标表示得出,求解即可得出答案.
    【详解】因为,所以,解得.
    故答案为:
    【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.
    4.(2015·全国·高考真题)设向量,不平行,向量与平行,则实数 .
    【答案】
    【详解】因为向量与平行,所以,则所以.
    考点:向量共线.
    考点02 平面向量垂直求参数
    1.(2024·全国甲卷·高考真题)已知向量,若,则( )
    A.B.C.1D.2
    【答案】D
    【分析】根据向量垂直的坐标运算可求的值.
    【详解】因为,所以,
    所以即,故,
    故选:D.
    2.(2024·全国新Ⅰ卷·高考真题)设向量,则( )
    A.“”是“”的必要条件B.“”是“”的必要条件
    C.“”是“”的充分条件D.“”是“”的充分条件
    【答案】C
    【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
    【详解】对A,当时,则,
    所以,解得或,即必要性不成立,故A错误;
    对C,当时,,故,
    所以,即充分性成立,故C正确;
    对B,当时,则,解得,即必要性不成立,故B错误;
    对D,当时,不满足,所以不成立,即充分性不立,故D错误.
    故选:C.
    3.(2023·全国新Ⅰ卷·高考真题)已知向量,若,则( )
    A.B.
    C.D.
    【答案】D
    【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.
    【详解】因为,所以,,
    由可得,,
    即,整理得:.
    故选:D.
    4.(2021·全国甲卷·高考真题)已知向量.若,则 .
    【答案】.
    【分析】利用向量的坐标运算法则求得向量的坐标,利用向量的数量积为零求得的值
    【详解】,
    ,解得,
    故答案为:.
    【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量垂直的充分必要条件是其数量积.
    5.(2020·全国·高考真题)设向量,若,则 .
    【答案】5
    【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.
    【详解】由可得,
    又因为,
    所以,
    即,
    故答案为:5.
    【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.
    考点03 平面向量的基本定理及其应用
    1.(2022·全国新Ⅰ卷·高考真题)在中,点D在边AB上,.记,则( )
    A.B.C.D.
    【答案】B
    【分析】根据几何条件以及平面向量的线性运算即可解出.
    【详解】因为点D在边AB上,,所以,即,
    所以.
    故选:B.
    2.(2020·山东·高考真题)已知平行四边形,点,分别是,的中点(如图所示),设,,则等于( )

    A.B.C.D.
    【答案】A
    【分析】利用向量的线性运算,即可得到答案;
    【详解】连结,则为的中位线,


    故选:A
    3.(2018·全国·高考真题)在△中,为边上的中线,为的中点,则
    A.B.
    C.D.
    【答案】A
    【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.
    【详解】根据向量的运算法则,可得

    所以,故选A.
    【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.
    4.(2015·北京·高考真题)在△ABC中,点M,N满足,若,则x= ,y= .
    【答案】
    【详解】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.

    考点:本题考点为平面向量有关知识与计算,利用向量相等解题.
    考点04 平面向量的模长
    1.(2024·全国新Ⅱ卷·高考真题)已知向量满足,且,则( )
    A.B.C.D.1
    【答案】B
    【分析】由得,结合,得,由此即可得解.
    【详解】因为,所以,即,
    又因为,
    所以,
    从而.
    故选:B.
    2.(2023·北京·高考真题)已知向量满足,则( )
    A.B.C.0D.1
    【答案】B
    【分析】利用平面向量数量积的运算律,数量积的坐标表示求解作答.
    【详解】向量满足,
    所以.
    故选:B
    3.(2023·全国新Ⅱ卷·高考真题)已知向量,满足,,则 .
    【答案】
    【分析】法一:根据题意结合向量数量积的运算律运算求解;法二:换元令,结合数量积的运算律运算求解.
    【详解】法一:因为,即,
    则,整理得,
    又因为,即,
    则,所以.
    法二:设,则,
    由题意可得:,则,
    整理得:,即.
    故答案为:.
    4.(2022·全国乙卷·高考真题)已知向量,则( )
    A.2B.3C.4D.5
    【答案】D
    【分析】先求得,然后求得.
    【详解】因为,所以.
    故选:D
    5.(2021·全国甲卷·高考真题)若向量满足,则 .
    【答案】
    【分析】根据题目条件,利用模的平方可以得出答案
    【详解】∵

    ∴.
    故答案为:.
    6.(2020·全国·高考真题)设为单位向量,且,则 .
    【答案】
    【分析】整理已知可得:,再利用为单位向量即可求得,对变形可得:,问题得解.
    【详解】因为为单位向量,所以
    所以
    解得:
    所以
    故答案为:
    【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.
    7.(2019·全国·高考真题)已知向量,则
    A.B.2
    C.5D.50
    【答案】A
    【分析】本题先计算,再根据模的概念求出.
    【详解】由已知,,
    所以,
    故选A
    【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.
    8.(2017·全国·高考真题)已知向量与的夹角为60°,||=2,||=1,则| +2 |= .
    【答案】
    【详解】∵平面向量与的夹角为,
    ∴.

    故答案为.
    点睛:(1)求向量的夹角主要是应用向量的数量积公式.
    (2) 常用来求向量的模.
    9.(2017·浙江·高考真题)已知向量满足,则的最小值是 ,最大值是 .
    【答案】 4
    【详解】设向量的夹角为,由余弦定理有:,
    ,则:

    令,则,
    据此可得:,
    即的最小值是4,最大值是.
    【名师点睛】本题通过设向量的夹角为,结合模长公式, 可得,再利用三角函数的有界性求出最大、最小值,属中档题,对学生的转化能力和最值处理能力有一定的要求.
    考点05 求平面向量数量积
    1.(2023·全国乙卷·高考真题)正方形的边长是2,是的中点,则( )
    A.B.3C.D.5
    【答案】B
    【分析】方法一:以为基底向量表示,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求,进而根据数量积的定义运算求解.
    【详解】方法一:以为基底向量,可知,
    则,
    所以;
    方法二:如图,以为坐标原点建立平面直角坐标系,
    则,可得,
    所以;
    方法三:由题意可得:,
    在中,由余弦定理可得,
    所以.
    故选:B.
    2.(2022·全国乙卷·高考真题)已知向量满足,则( )
    A.B.C.1D.2
    【答案】C
    【分析】根据给定模长,利用向量的数量积运算求解即可.
    【详解】解:∵,
    又∵
    ∴9,

    故选:C.
    3.(2022·北京·高考真题)在中,.P为所在平面内的动点,且,则的取值范围是( )
    A.B.C.D.
    【答案】D
    【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
    【详解】解:依题意如图建立平面直角坐标系,则,,,
    因为,所以在以为圆心,为半径的圆上运动,
    设,,
    所以,,
    所以
    ,其中,,
    因为,所以,即;
    故选:D

    4.(2020·山东·高考真题)已知P是边长为2的正六边形ABCDEF内的一点,则 的取值范围是( )
    A.B.
    C.D.
    【答案】A
    【分析】首先根据题中所给的条件,结合正六边形的特征,得到在方向上的投影的取值范围是,利用向量数量积的定义式,求得结果.
    【详解】
    的模为2,根据正六边形的特征,
    可以得到在方向上的投影的取值范围是,
    结合向量数量积的定义式,
    可知等于的模与在方向上的投影的乘积,
    所以的取值范围是,
    故选:A.
    【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.
    二、多选题
    5.(2021·全国新Ⅰ卷·高考真题)已知为坐标原点,点,,,,则( )
    A.B.
    C.D.
    【答案】AC
    【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
    【详解】A:,,所以,,故,正确;
    B:,,所以,同理,故不一定相等,错误;
    C:由题意得:,,正确;
    D:由题意得:,
    ,故一般来说故错误;
    故选:AC
    三、填空题
    6.(2022·全国甲卷·高考真题)设向量,的夹角的余弦值为,且,,则 .
    【答案】
    【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得.
    【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,
    又,,所以,
    所以.
    故答案为:.
    7.(2021·天津·高考真题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为 ;的最小值为 .
    【答案】 1
    【分析】设,由可求出;将化为关于的关系式即可求出最值.
    【详解】设,,为边长为1的等边三角形,,

    ,为边长为的等边三角形,,



    所以当时,的最小值为.
    故答案为:1;.
    8.(2021·全国新Ⅱ卷·高考真题)已知向量,,, .
    【答案】
    【分析】由已知可得,展开化简后可得结果.
    【详解】由已知可得,
    因此,.
    故答案为:.
    9.(2021·北京·高考真题)已知向量在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则
    ; .
    【答案】 0 3
    【分析】根据坐标求出,再根据数量积的坐标运算直接计算即可.
    【详解】以交点为坐标原点,建立直角坐标系如图所示:
    则,
    ,,
    .
    故答案为:0;3.
    10.(2020·天津·高考真题)如图,在四边形中,,,且,则实数的值为 ,若是线段上的动点,且,则的最小值为 .
    【答案】
    【分析】可得,利用平面向量数量积的定义求得的值,然后以点为坐标原点,所在直线为轴建立平面直角坐标系,设点,则点(其中),得出关于的函数表达式,利用二次函数的基本性质求得的最小值.
    【详解】,,,

    解得,
    以点为坐标原点,所在直线为轴建立如下图所示的平面直角坐标系,
    ,
    ∵,∴的坐标为,
    ∵又∵,则,设,则(其中),
    ,,

    所以,当时,取得最小值.
    故答案为:;.
    【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.
    11.(2020·北京·高考真题)已知正方形的边长为2,点P满足,则 ; .
    【答案】
    【分析】以点为坐标原点,、所在直线分别为、轴建立平面直角坐标系,求得点的坐标,利用平面向量数量积的坐标运算可求得以及的值.
    【详解】以点为坐标原点,、所在直线分别为、轴建立如下图所示的平面直角坐标系,
    则点、、、,

    则点,,,
    因此,,.
    故答案为:;.
    【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点的坐标是解答的关键,考查计算能力,属于基础题.
    考点06 求平面向量的夹角
    一、单选题
    1.(2023·全国甲卷·高考真题)已知向量,则( )
    A.B.C.D.
    【答案】B
    【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.
    【详解】因为,所以,
    则,,
    所以.
    故选:B.
    2.(2023·全国甲卷·高考真题)已知向量满足,且,则( )
    A.B.C.D.
    【答案】D
    【分析】作出图形,根据几何意义求解.
    【详解】因为,所以,
    即,即,所以.
    如图,设,
    由题知,是等腰直角三角形,
    AB边上的高,
    所以,
    ,
    .
    故选:D.
    3.(2022·全国新Ⅱ卷·高考真题)已知向量,若,则( )
    A.B.C.5D.6
    【答案】C
    【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得
    【详解】解:,,即,解得,
    故选:C
    4.(2020·全国·高考真题)已知向量 ,满足, ,,则( )
    A.B.C.D.
    【答案】D
    【分析】计算出、的值,利用平面向量数量积可计算出的值.
    【详解】,,,.

    因此,.
    故选:D.
    【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.
    5.(2019·全国·高考真题)已知非零向量满足,且,则与的夹角为
    A.B.C.D.
    【答案】B
    【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
    【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.
    【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.
    6.(2016·全国·高考真题)已知向量 , 则ABC=
    A.30B.45C.60D.120
    【答案】A
    【详解】试题分析:由题意,得,所以,故选A.
    【考点】向量的夹角公式.
    【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.
    二、填空题
    7.(2022·天津·高考真题)在中,,D是AC中点,,试用表示为 ,若,则的最大值为
    【答案】
    【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
    法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
    【详解】方法一:
    ,,
    ,当且仅当时取等号,而,所以.
    故答案为:;.
    方法二:如图所示,建立坐标系:
    ,,
    ,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
    故答案为:;.
    8.(2020·浙江·高考真题)设,为单位向量,满足,,,设,的夹角为,则的最小值为 .
    【答案】
    【分析】利用向量模的平方等于向量的平方化简条件得,再根据向量夹角公式求函数关系式,根据函数单调性求最值.
    【详解】,


    .
    故答案为:.
    【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.
    9.(2019·全国·高考真题)已知向量,则 .
    【答案】
    【分析】根据向量夹角公式可求出结果.
    【详解】.
    【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.
    10.(2019·全国·高考真题)已知为单位向量,且=0,若 ,则 .
    【答案】.
    【分析】根据结合向量夹角公式求出,进一步求出结果.
    【详解】因为,,
    所以,
    ,所以,
    所以 .
    【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.
    考点
    十年考情(2015-2024)
    命题趋势
    考点1 平面向量平行(共线)求参数
    (10年4考)
    2024·上海卷、2021·全国乙卷、2016·全国卷、2015·全国卷
    掌握平面向量的基本概念、线性运算及坐标运算,已知平面向量的关系要会求参数
    掌握基本定理的基底表示向量、能在平面几何图形中的应用
    掌握平面向量数量积的表示和计算、会求平面几何图形中的范围及最值等问题。
    考点2 平面向量垂直求参数
    (10年4考)
    2024·全国甲卷、2024·全国新Ⅰ卷、2023·全国新Ⅰ卷、2021·全国甲卷、2020·全国卷
    考点3 平面向量的基本定理及其应用
    (10年4考)
    2022·全国新Ⅰ卷、2020·山东卷、2018·全国卷、2015·北京卷
    考点4 平面向量的模长
    (10年7考)
    2024·全国新Ⅱ卷、2023·北京卷、2023·全国新Ⅱ卷、2022·全国乙卷、2021·全国甲卷、2020·全国卷、2019·全国卷、2017·全国卷、2017·浙江卷
    考点5 求平面向量数量积
    (10年9考)
    2023·全国乙卷、2022·全国乙卷、2022·北京卷、2020·山东卷、2021·全国新Ⅰ卷、2022·全国甲卷、2021·天津卷、2021·全国新Ⅱ卷、2021·北京卷、2020·天津卷、2020·北京卷
    考点6 求平面向量的夹角
    (10年6考)
    2023·全国甲卷、2023·全国甲卷、2022·全国新Ⅱ卷、2020·全国卷、2019·全国卷、2016·全国卷、2022·天津卷、2020·浙江卷、2019·全国卷、
    2019·全国卷
    相关试卷

    专题02 复数- 十年(2015-2024)高考真题数学分项汇编(全国通用): 这是一份专题02 复数- 十年(2015-2024)高考真题数学分项汇编(全国通用),文件包含专题02复数教师卷-十年2015-2024高考真题数学分项汇编全国通用docx、专题02复数学生卷-十年2015-2024高考真题数学分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    专题01 集合与常用逻辑用语- 十年(2015-2024)高考真题数学分项汇编(全国通用): 这是一份专题01 集合与常用逻辑用语- 十年(2015-2024)高考真题数学分项汇编(全国通用),文件包含专题01集合与常用逻辑用语教师卷-十年2015-2024高考真题数学分项汇编全国通用docx、专题01集合与常用逻辑用语学生卷-十年2015-2024高考真题数学分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    专题10 平面向量(理科)-十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题10 平面向量(理科)-十年(2014-2023)高考数学真题分项汇编(全国通用)

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题03 平面向量- 十年(2015-2024)高考真题数学分项汇编(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map