所属成套资源:【高中数学一轮复习讲义】2025年高考数学知识点梳理+高频考点题型归纳+方法总结(新高考通用)
- 素养拓展32 椭圆、双曲线中的焦点三角形问题(精讲+精练)-【一轮复习讲义】高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 素养拓展33 曲线的轨迹方程问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 素养拓展35 圆锥曲线中的定直线问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 素养拓展36 圆锥曲线与向量交汇问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 素养拓展37 圆锥曲线中的存在性和探索性问题(精讲+精练)-【一轮复习讲义】高考数学高频考点题型归纳(新高考通用) 试卷 6 次下载
素养拓展34 圆锥曲线中的定点、定值问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
展开
这是一份素养拓展34 圆锥曲线中的定点、定值问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展34圆锥曲线中的定点定值问题精讲+精练原卷版docx、素养拓展34圆锥曲线中的定点定值问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
一、知识点梳理
一、定点问题
定点问题是比较常见出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.
【一般策略】
①引进参数.一般是点的坐标、直线的斜率、直线的夹角等.
②列出关系式.根据题设条件,表示出对应的动态直线或曲线方程.
③探究直线过定点.一般化成点斜式或者直线系方程
二、定值问题
在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动线中的参变量无关,这类问题统称为定值问题.这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.
【一般策略】
①从特殊入手,求出定值,再证明这个值与变量无关;
②引进变量法:选择适当的动点坐标或动直线中的系数为变量,然后把要证明为定值的量表示成上述变量的函数,最后把得到的函数化简,消去变量得到定值
【常用结论】
结论1 过圆锥曲线上的任意一点P(x0,y0)作互相垂直的直线交圆锥曲线于点A,B,则直线AB必过一定点(等轴双曲线除外).
结论2 过圆锥曲线的准线上任意一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB必过焦点.
结论3 过圆锥曲线外一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB已知且必过定点.
结论4 过圆锥曲线上的任意一点P(x0,y0)作斜率和为0的两条直线交圆锥曲线于A,B两点,则kAB为定值.
结论5 设点A,B是椭圆x2a2+y2b2=1(a>b>0)上关于原点对称的两点,点P是该椭圆上不同于A,B两点的任意一点,直线PA,PB的斜率分别是k1,k2,则k1·k2=-b2a2
二、题型精讲精练
【典例1】在平面直角坐标系中, 椭圆:的左,右顶点分别为、,点是椭圆的右焦点,,.
(1)求椭圆的方程;
(2)不过点的直线交椭圆于、两点,记直线、、的斜率分别为、、.若,证明直线过定点, 并求出定点的坐标.
【解析】(1)由题意知,,,,
∵,,
∴,解得,从而,
∴椭圆的方程为.
(2)设直线的方程为,,.
直线不过点,因此.
由 ,得,
时,,,
∴
,
由,可得,即,
故的方程为,恒过定点.
【典例2】已知椭圆,离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于,两点,为坐标原点直线,的斜率之积等于,试探求的面积是否为定值,并说明理由.
【解析】解:(1)椭圆离心率为,即,
点与椭圆的左、右顶点可以构成等腰直角三角形,
,,,故椭圆方程为.
(2)由直线与椭圆交于,两点,
联立,得,
设,,,,则△,
,,
所以,
,
,
原点到的距离,
为定值.
【题型训练1-刷真题】
一、解答题
1.(22·23·全国·高考真题)已知椭圆的离心率是,点在上.
(1)求的方程;
(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
2.(21·22·全国·高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
3.(21·22·全国·专题练习)如图,中心在原点O的椭圆的右焦点为,右准线l的方程为:.
(1)求椭圆的方程;
(2)在椭圆上任取三个不同点,使,证明:为定值,并求此定值.
4.(19·20·山东·高考真题)已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
【题型训练2-刷模拟】
1.定点问题
一、解答题
1.已知抛物线经过点,直线与抛物线相交于不同的、两点.
(1)求抛物线的方程;
(2)如果,直线是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.
2.已知椭圆的两个焦点分别为,离心率为.
(1)求椭圆的标准方程;
(2)M为椭圆的左顶点,直线与椭圆交于两点,若,求证:直线过定点.
3.设抛物线的方程为,点为直线上任意一点,过点作抛物线的两条切线,,切点分别为,.
(1)当的坐标为时,求过,,三点的圆的方程,并判断直线与此圆的位置关系;
(2)求证:直线恒过定点.
4.已知圆,为圆内一个定点,是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时.
(1)求点的轨迹的方程;
(2)已知圆:在的内部,是上不同的两点,且直线与圆相切.求证:以为直径的圆过定点.
5.已知椭圆的左焦点为,且点在椭圆上.
(1)求椭圆的标准方程;
(2)椭圆的上、下顶点分别为,点,若直线与椭圆的另一个交点分别为点,证明:直线过定点,并求该定点坐标.
6.已知双曲线的一条渐近线方程为,焦点到渐近线的距离为.
(1)求的方程;
(2)过双曲线的右焦点作互相垂直的两条弦(斜率均存在)、.两条弦的中点分别为、,那么直线是否过定点?若不过定点,请说明原因;若过定点,请求出定点坐标.
7.在平面直角坐标系中,,,M为平面内的一个动点,且,线段AM的垂直平分线交BM于点N,设点N的轨迹是曲线C.
(1)求曲线C的方程;
(2)设动直线l:与曲线C有且只有一个公共点P,且与直线相交于点Q,问是否存在定点H,使得以PQ为直径的圆恒过点H?若存在,求出点H的坐标;若不存在,请说明理由.
8.已知为椭圆上一点,点与椭圆的两个焦点构成的三角形面积为.
(1)求椭圆的标准方程;
(2)不经过点的直线与椭圆相交于两点,若直线与的斜率之和为,证明:直线必过定点,并求出这个定点坐标.
9.已知椭圆的左焦点为,点在上.
(1)求椭圆的方程;
(2)过的两条互相垂直的直线分别交于两点和两点,若的中点分别为,证明:直线必过定点,并求出此定点坐标.
10.在平面直角坐标系中,顶点在原点,以坐标轴为对称轴的抛物线经过点.
(1)求的方程;
(2)若关于轴对称,焦点为,过点且与轴不垂直的直线交于,两点,直线交于另一点,直线交于另一点,求证:直线过定点.
11.平面直角坐标系xOy中,已知双曲线()的离心率为,实轴长为4.
(1)求C的方程;
(2)如图,点A为双曲线的下顶点,直线l过点且垂直于y轴(P位于原点与上顶点之间),过P的直线交C于G,H两点,直线AG,AH分别与l交于M,N两点,若直线的斜率满足,求点P的坐标.
12.已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,过点且与椭圆有相同焦点
(1)求E的离心率:
(2)设椭圆E的下顶点为A,设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T.证明:直线TN过定点.
13.在平面直角坐标系中,已知点,直线,设动点到直线的距离为,且.
(1)求动点的轨迹的方程,并指出它表示什么曲线;
(2)已知过点的直线与曲线交于两点,点,直线与轴分别交于点,试问:线段的中点是否为定点,若是定点,求出该定点坐标;若不是,请说明理由.
14.已知为椭圆:上一点,长轴长为.
(1)求椭圆的标准方程;
(2)不经过点的直线与椭圆相交于,两点,若直线与的斜率之和为,证明:直线必过定点,并求出这个定点坐标.
15.椭圆的左、右焦点分别为,左、右顶点分别为,点在上.已知面积的最大值为,且与的面积之比为.
(1)求的方程;
(2)不垂直于坐标轴的直线交于两点,与不重合,直线与的斜率之积为.证明:过定点.
2.定值问题
一、解答题
1.已知为椭圆的两个焦点,为椭圆上异于左、右顶点的任意一点,的周长为6,面积的最大值为:
(1)求椭圆的方程;
(2)直线与椭圆的另一交点为,与轴的交点为.若,.试问:是否为定值?并说明理由.
2.在平面直角坐标系中,已知圆心为的动圆过点,且在轴上截得的弦长为4,记的轨迹为曲线.
(1)求曲线的方程;
(2)已知及曲线上的两点和,直线经过定点,直线的斜率分别为,求证:为定值.
3.已知点是离心率为的椭圆上的一点.
(1)求椭圆C的方程;
(2)点P在椭圆上,点A关于坐标原点的对称点为B,直线AP和BP的斜率都存在且不为0,试问直线AP和BP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由.
4.已知椭圆离心率等于且椭圆C经过点.
(1)求椭圆的标准方程;
(2)若直线与轨迹交于两点,为坐标原点,直线的斜率之积等于,试探求的面积是否为定值,并说明理由.
5.过点的直线为为圆与轴正半轴的交点.
(1)若直线与圆相切,求直线的方程:
(2)证明:若直线与圆交于两点,直线的斜率之和为定值.
6.已知双曲线C : 的左、右焦点分别为,,双曲线C的右顶点A在圆 O :上,且.
(1)求双曲线C的标准方程;
(2)动直线与双曲线C恰有1个公共点,且与双曲线C的两条渐近线分别交于点M,N,求△OMN (O为坐标原点)的面积.
7.已知圆,点,动直线过定点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆相交于两点,则是否为定值,若是,求出该定值;若不是,请说明理由.
8.以坐标原点为对称中心,坐标轴为对称轴的椭圆过点.
(1)求椭圆的方程.
(2)设是椭圆上一点(异于),直线与轴分别交于两点.证明在轴上存在两点,使得是定值,并求此定值.
9.已知,M为平面上一动点,且满足,记动点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若,过点的动直线交曲线E于P,Q(不同于A,B)两点,直线AP与直线BQ的斜率分别记为,,求证:为定值,并求出定值.
10.已知双曲线的实轴长为4,离心率为.过点的直线l与双曲线C交于A,B两点.
(1)求双曲线C的标准方程;
(2)已知点,若直线QA,QB的斜率均存在,试问其斜率之积是否为定值?请给出判断与证明.
11.已知椭圆C:过点,且.
(1)求椭圆C的方程;
(2)过点的直线l交C于点M,N,直线分别交直线于点P,Q.求证:为定值.
12.已知双曲线:的右焦点为,离心率.
(1)求的方程;
(2)若直线过点且与的右支交于M,N两点,记的左、右顶点分别为,,直线,的斜率分别为,,证明:为定值.
13.已知椭圆的右焦点为,点在E上.
(1)求椭圆E的标准方程;
(2)过点F的直线l与椭圆E交于A,B两点,点Q为椭圆E的左顶点,直线QA,QB分别交于M,N两点,O为坐标原点,求证:为定值.
14.已知点到的距离是点到的距离的2倍.
(1)求点的轨迹方程;
(2)若点与点关于点对称,过的直线与点的轨迹交于,两点,探索是否为定值?若是,求出该定值;若不是,请说明理由.
15.已知椭圆:的离心率为,上焦点到上顶点的距离为2.
(1)求椭圆的标准方程;
(2)过点的直线交椭圆于,两点,与定直线:交于点,设,,证明:为定值.
16.已知圆的方程为,直线与圆交于两点.
(1)若坐标原点到直线的距离为,且过点,求直线的方程;
(2)已知点,为的中点,若在轴上方,且满足,在圆上是否存在定点,使得的面积为定值?若存在,求出的面积;若不存在,说明理由.
相关试卷
这是一份素养拓展36 圆锥曲线与向量交汇问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展36圆锥曲线与向量交汇问题精讲+精练原卷版docx、素养拓展36圆锥曲线与向量交汇问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。
这是一份素养拓展35 圆锥曲线中的定直线问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展35圆锥曲线中的定直线问题精讲+精练原卷版docx、素养拓展35圆锥曲线中的定直线问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份素养拓展33 曲线的轨迹方程问题(精讲+精练)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含素养拓展33曲线的轨迹方程问题精讲+精练原卷版docx、素养拓展33曲线的轨迹方程问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。