|教案下载
终身会员
搜索
    上传资料 赚现金
    北师大版七下数学期末备考—第02讲—平行线和全等三角形 -教案
    立即下载
    加入资料篮
    北师大版七下数学期末备考—第02讲—平行线和全等三角形 -教案01
    北师大版七下数学期末备考—第02讲—平行线和全等三角形 -教案02
    北师大版七下数学期末备考—第02讲—平行线和全等三角形 -教案03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版七下数学期末备考—第02讲—平行线和全等三角形 -教案

    展开
    这是一份北师大版七下数学期末备考—第02讲—平行线和全等三角形 -教案,共14页。教案主要包含了几何图形知识回顾,几何图形考点概要等内容,欢迎下载使用。

    考点梳理
    一、几何图形知识回顾(可引导学生从点线面出发,进行游戏)
    疯狂开火车啦!老师以一排学生为开始,每位学生说出已经学过的几何图形知识点,当一名同学回答完毕后,紧挨着的同学必须马上说出另外不同的知识点,依次进行下去。
    二、几何图形考点概要
    重点剖析
    重点一、构造全等三角形的方法
    ①倍长中线法:延长中线,构造一条与中线长度相等的线段。
    例1、如图,AD是△ABC的中线,E是AC上的一点,BE交AD于F,已知AC=BF,
    ∠DAC=35°,∠EBC=40°,求∠C度数
    【解析】如图,延长AD到M,使得DM=AD,连接BM.
    在△BDM和△CDA中,,
    ∴△BDM≌△CDA,
    ∴BM=AC=BF,∠M=∠CAD=35°,∠C=∠DBM,
    ∵BF=AC,
    ∴BF=BM,
    ∴∠M=∠BFM=35°,
    ∴∠MBF=180°﹣∠M﹣∠BFM=110°,
    ∵∠EBC=40°,
    ∴∠DBM=∠MBF﹣∠EBC=70°,
    ∴∠C=∠DBM=70°
    【举一反三】
    在△ABC中,AB=AC,M为BC的中点, 过C作直线CE,分别交AM、AB于点D、E, 且AD=AE,AE=6,AC=8, 求AM的长
    【解析】如图,延长AM,使得AM=MN,连接CM
    在ABM△和△NCM中,
    ∴△ABM≌△NCM(SAS)
    ∴AB=CN=AC=8,
    ∴AB∥CN

    ∵AE=DE=6



    ∵(已证)

    ∴DN=CN=8
    ∴AN=DN+AD=8+6=14
    ∴AM=7
    ②截长补短法:在一条较长线段上,截取一条与已知线段相等的线段,通常还有角平分线这一条件。一般用于证明线段的和差关系。
    例2、如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC
    【解析】证明:在AC上截取AE=AB,连接DE,
    ∵AD平分∠BAC
    ∴∠BAD=∠DAC
    在△ABD和△AED中,
    ∴△ABD≌△AED(SAS)
    ∴∠B=∠AED,BD=DE,又∠B=2∠C
    ∴∠AED=2∠C
    而∠AED=∠C+∠EDC=2∠C
    ∴∠C=∠EDC
    ∴DE=CE
    ∴AB+BD=AE+CE=AC
    【举一反三】
    已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.
    【解析】证明:在BC上取点G使得CG=CD,
    ∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°
    ∴∠BOE=∠COD=60°
    ∵在△COD和△COG中,,
    ∴△CODF≌△COG(SAS)
    ∴∠COG=∠COD=60°
    ∴∠BOG=120°﹣60°=60°=∠BOE
    ∵在△BOE和△BOG中,
    ∴△BOE≌△BOG(ASA)
    ∴BE=BG,
    ∴BE+CD=BG+CG=BC.
    ③运用角平分线法:根据角平分线性质,可以得到垂线段相等,运用这个来解题。
    例3、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
    证明: BE=CF
    【解析】证明:连接BD,CD,
    ∵AD平分∠BAC,DE⊥AB,DF⊥AC,
    ∴DE=DF,∠BED=∠CFD=90°,
    ∵DG⊥BC且平分BC,
    ∴BD=CD,
    在Rt△BED与Rt△CFD中,
    ∴Rt△BED≌Rt△CFD(HL)
    ∴BE=CF
    【举一反三】
    已知:如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.
    (1)求证:AM平分∠DAB.
    (2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.
    【解析】(1)证明:过M作ME⊥AD于E,
    ∵DM平分∠ADC,∠C=90°,ME⊥AD,
    ∴MC=ME,
    ∵M为BC的中点,
    ∴BM=MC=ME,
    在Rt△AEM与Rt△ABM中
    ∴Rt△AEM≌Rt△ABM(HL)
    ∴∠EAM=∠BAM
    ∴AM平分∠DAB
    (2)AM⊥DM,
    证明:∵AB∥DC,
    ∴∠BAD+∠ADC=180°,
    ∵AM平分∠DAB,DM平分∠ADC,
    ∴∠MAD=∠BAD,∠MDA=∠ADC,
    ∴∠MAD+∠MDA=90°,
    ∴∠AMD=90°,
    ∴AM⊥DM.
    抢答环节:构造全等三角形的方法有哪几种?辅助线的大致做法?
    重点二、 平行线问题中的构造方法
    ①平行线中有一个拐点或者多个拐点的情况,常见的辅助线就是过这个拐点或几个拐点做已知直线的平行线或者延长平行线之间的第三条直线。常见辅助线如下:
    例1,AB∥CD,EOF是直线AB、CD间的一条折线.
    (1)试证明:∠O=∠BEO+∠DFO.
    (2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.
    【解析】(1)证明:作OM∥AB,如图,
    ∴∠1=∠BEO
    ∵AB∥CD
    ∴OM∥CD
    ∴∠2=∠DFO
    ∴∠1+∠2=∠BEO+∠DFO
    即:∠O=∠BEO+∠DFO
    (2)解:∠O+∠PFC=∠BEO+∠P.理由如下:
    作OM∥AB,PN∥CD,如图
    ∵AB∥CD,
    ∴OM∥PN∥AB∥CD,
    ∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,
    ∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,
    ∴∠O+∠PFC=∠BEO+∠P.
    【举一反三】如图,已知直线a∥b,直线m和直线a、b交于点C和D,点A在直
    线a上,点B在直线b上,点P在直线m上,且点A、B的位置不变,记∠PAC=α,∠APB=β,∠PBD=γ.
    (1)当点P在C、D之间运动时,问α、β、γ之间有什么数量关系?请说明理由.
    (2)当点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索α、β、γ之间的数量关系
    是 (直接写出答案).
    【解析】(1)β=α+γ
    如图1,过点P作PQ∥a
    ∴∠APQ=∠PAC=α
    又∵a∥b
    ∴PQ∥b
    ∴∠BPQ=∠PBD=γ
    ∵∠APB=∠APQ+∠BPQ
    ∴β=α+γ
    (2)如图2,当点P在C点外侧运动时,
    过P点做PQ∥a.
    ∵a∥b,
    ∴PQ∥a∥b,
    ∴∠APQ=∠PAC,∠QPB=∠PBD,
    ∴∠QPB﹣∠QPA=∠PBD﹣∠PAC,
    ∵∠QPB﹣∠QPA=∠APB,
    ∴∠APB=∠PBD﹣∠PAC,即β=γ﹣α;
    如图3,当点P在D点外侧运动时,过P点做PM∥a,
    ∵a∥b,
    ∴PM∥a∥b,
    ∴∠APM=∠PAC,∠MPB=∠PBD,
    ∴∠MPA﹣∠MPB=∠PAC﹣∠PBD,
    ∵∠MPA﹣∠MPB=∠APB,
    ∴∠APB=∠PAC﹣∠PBD,即β=α﹣γ,
    故答案为:β=γ﹣α或β=α﹣γ.
    期末热点题型
    1、如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
    (1)PC= cm.(用t的代数式表示)
    (2)当t为何值时,△ABP≌△DCP?
    (3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
    【解析】(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,
    则PC=10﹣2t
    (2)当t=2.5时,△ABP≌△DCP
    ∵当t=2.5时,BP=2.5×2=5
    ∴PC=10﹣5=5
    ∵在△ABP和△DCP中,
    ∴△ABP≌△DCP(SAS)
    (3)①当BP=CQ,AB=PC时,△ABP≌△PCQ
    ∵AB=6
    ∴PC=6
    ∴BP=10﹣6=4,2t=4,
    解得:t=2,CQ=BP=4,
    v×2=4,解得:v=2;
    ②当BA=CQ,PB=PC时,△ABP≌△QCP,
    ∵PB=PC
    ∴BP=PC=BC=5,2t=5,
    解得:t=2.5,CQ=BP=6,
    v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.
    【举一反三】
    如图1,已知正方形ABCD的边长为6,∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,点P为正方形ABCD边上的动点,动点P从点A出发,沿着A→B→C→D运动到D点时停止,设点P经过的路程为x,△APD的面积为y
    (1)如图2,当x=2时,y= ;
    (2)如图3,当点P在边BC上运动时,y= ;
    (3)当y=12时,求x的值;
    (4)当点P在边BC上运动时,是否存在点P,使得△APD的周长最小?若存在,求出此时x的值;若不存在,请说明理由.
    【解析】(1)如图2,∵AP=x=2,AD=6,∠A=90°,
    ∴y=S△APD=AP•AD=6;
    (2)如图3,y=S△APD=AD•AB=×6×6=18;
    (3)解:由已知得只有当点P在边AB或边CD上运动时,y=12,
    当点P在边AB上运动时,
    ∵S△PAD=AD•PA,
    ∴×6×PA=12,解得PA=4,即x=4;
    当点P在边CD上运动时,
    ∵S△PAD=AD×PD,
    ∴×6×PD=12,解得:PD=4,
    ∴x=AB+BC+CD=6+6+6﹣4=14;
    综上所述,当y=12时,x=4或14;
    (4)作点A关于直线BC的对称点A1,连接A1D交BC于点P,则点P为所求.
    ∴A1B=AB=CD=6
    ∵∠PBA1=∠PBA=90°,∠C=90°
    ∴∠PBA1=∠C
    在△A1BP和△DCP中,,
    ∴△A1BP≌△DCP(AAS),
    ∴PB=PC=3,
    ∴x=AB+PB=9.
    相关教案

    北师大版七下数学期末备考—第01讲—整式乘除、变量关系和概率计算-教案: 这是一份北师大版七下数学期末备考—第01讲—整式乘除、变量关系和概率计算-教案,共12页。教案主要包含了基本知识抢答环节,数与式考点概要,初步概率等内容,欢迎下载使用。

    初中数学沪科版七年级下册10.2 平行线的判定一等奖第1课时教案设计: 这是一份初中数学沪科版七年级下册10.2 平行线的判定一等奖第1课时教案设计,共6页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    数学七年级下册5.2.2 平行线的判定教学设计: 这是一份数学七年级下册5.2.2 平行线的判定教学设计,共32页。教案主要包含了知识梳理,课堂精讲,课堂练习,课后巩固练习等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map