初中数学人教版九年级上册21.3 实际问题与一元二次方程获奖教学课件ppt
展开1.根据实际问题中的数量关系,正确列出一元二次方程。2.通过列方程解应用题体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程,提高数学应用意识。
【提问】已经学过了哪些解一元二次方程的方法?
(x+m)2=n (n≥0)
(x-x1)(x-x2)=0
【提问】回顾列方程解决实际问题的基本步骤?
1)审:分清已知未知,明确数量关系;
5)验:根据实际验结果;
有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?
[分析] 1)开始传染源_________人; 2)第一轮后有_________人患了流感; 3)第二轮传染中,已经患病的人平均又传染了x人, 第二轮后有___________人患了流感;
设每轮传染中平均一个人传染了x个人,
列方程 1+x+x(1+x) = 121
答:平均一个人传染了 10 个人.
解方程得x1=10,x2=-12 (不合题意,舍去)
【问题】如果按照这样的传播速度,第三轮传染过后总共会有多少人得流感?
[分析]经过两轮传染后共有_______个人患了流感,平均每轮传染________人,则第三轮有___________人患了流感。
121+121×10 = 1 331(人)
【提问】若某人感染流感,假设每轮传染中平均一个人传染了x个人,填空:
x[x(x+1)+x+1]
解决“传播问题”的关键步骤是:明确每轮传播中的传染源个数,以及这一轮被传染的总数。
例1 某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有144台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过1700台?
例2 某种流感病毒,若有一人患了这种流感,则在每轮传染中一人将平均传染x人.(1)现有一人患上这种流感,求第一轮传染后患病的人数(用含x的代数式表示);(2)在进入第二轮传染前,有两位患者被及时隔离并治愈,问第二轮传染后患病的人数会有21人吗?
1.有一个人患了流感,经过两轮传染后有若干人被传染上流感.假设在每轮的传染中平均一个人传染了x个人.(1)第二轮被传染上流感人数是______;(用含x的代数式表示)(2)在进入第二轮传染之前,如果有4名患者被及时隔离(未治愈),经过两轮传染后是否会有63人患病的情况发生,并说明理由.
2. 学生会要组织“西实杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行______场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?
3 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少个小分支?
解:设每个支干长出 x 个小分支, 则 1 + x + x2 = 91解方程,得x1 = 9,x2 = -10(不合题意,舍去) 答:每个支干长出 9 个小分支
1.某农户的小麦产量年平均增长率为 x,第一年的产量为 50 000 kg,第二年的产量为____________ kg,第三年的产量为______________ kg.
50 000(1 + x )
2.某粮食厂2021年面粉产量为a吨,如果在以后两年平均减产的百分率为 x,那么预计 2022年的产量将是_________吨.2023年的产量将是__________吨.
两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
【提问】什么是下降额?下降率如何计算?
下降额=下降前的量-下降后的量
增长额=增长后的量-增长前的量
【提问】什么是增长额?增长率如何计算?
乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元).
甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),
显然,乙种药品的年平均下降额较大,但是年平均下降额(元)不等同于年平均下降率(百分率)。
解:设甲种药品成本的年平均下降率为 x 一年后甲种药品成本为____________元, 两年后甲种药品成本为____________元.
答:甲种药品成本的年平均下降率为22.5%
【补充】下降率是用减少的数除以原数,则所得结果必定小于1,因此不能大于或等于1。
解:设乙种药品成本的年平均下降率为 y 一年后乙种药品成本为____________元, 两年后乙种药品成本为____________元.
答:乙种药品成本的年平均下降率为22.5%
【问题】经过计算,你能得出什么结论?
【问题】成本下降额大的药品,它的成本下降率一定也大吗?
【问题】应怎样全面地比较几个对象的变化状况?
成本下降额表示绝对变化量,成本下降率表示相对变化量,两者兼顾才能全面比较对象的变化状况。
两种药品成本的年平均下降率相等
成本下降额较大的产品,其成本下降率不一定较大。
【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.
例3 某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.
1.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?
4.(2023·湖南郴州真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
5.(2021·山东东营真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
1. 本节课学习,你有哪些收获?请你用自己的语言简述一元二次方程解应用题的步骤?2. 你知道本节课研究“传播问题”的基本特征吗?解决此类问题的关键步骤是什么?
“传播问题”的基本特征:以相同的速度逐轮传播。解决此类问题的关键步骤:明确每轮传播中的传染源个数,以及这一轮被传染的总数。
P25:复习题21:第7题、第9题、第10题
数学九年级上册21.3 实际问题与一元二次方程精品教学ppt课件: 这是一份数学九年级上册<a href="/sx/tb_c10284_t3/?tag_id=26" target="_blank">21.3 实际问题与一元二次方程精品教学ppt课件</a>,文件包含213实际问题与一元二次方程销售问题图表问题动点问题pptx、213实际问题与一元二次方程销售问题图表问题动点问题教学设计docx、213实际问题与一元二次方程销售问题图表问题动点问题导学案docx等3份课件配套教学资源,其中PPT共28页, 欢迎下载使用。
初中21.3 实际问题与一元二次方程精品教学课件ppt: 这是一份初中<a href="/sx/tb_c10284_t3/?tag_id=26" target="_blank">21.3 实际问题与一元二次方程精品教学课件ppt</a>,文件包含213实际问题与一元二次方程几何问题和数字问题pptx、213实际问题与一元二次方程几何问题和数字问题教学设计docx、213实际问题与一元二次方程几何问题和数字问题导学案docx等3份课件配套教学资源,其中PPT共27页, 欢迎下载使用。
初中数学人教版九年级上册21.3 实际问题与一元二次方程课文ppt课件: 这是一份初中数学人教版九年级上册<a href="/sx/tb_c10284_t3/?tag_id=26" target="_blank">21.3 实际问题与一元二次方程课文ppt课件</a>,共14页。PPT课件主要包含了下降率,下降前的量,解方程得,练一练,要点归纳,解这个方程得等内容,欢迎下载使用。