重庆巴蜀常春藤2022年数学九上期末经典模拟试题含解析
展开
这是一份重庆巴蜀常春藤2022年数学九上期末经典模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的解为,下列事件中是必然发生的事件是,方程x2﹣5=0的实数解为等内容,欢迎下载使用。
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时, .其中正确的是( )
A.①③B.②③C.①④D.②④
2.如图,在中,,则等于( )
A.B.C.D.
3.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )
A.B.C.D.
4.一元二次方程的解为( )
A.B. ,C. ,D.,
5.下列事件中是必然发生的事件是( )
A.抛两枚均匀的硬币,硬币落地后,都是正面朝上
B.射击运动员射击一次,命中十环
C.在地球上,抛出的篮球会下落
D.明天会下雨
6.方程x2﹣5=0的实数解为( )
A.B.C.D.±5
7.下列函数中,的值随着逐渐增大而减小的是( )
A.B.C.D.
8.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
9.如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为( )
A.3.4mB.3.5mC.3.6mD.3.7m
10.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是( )
A.k<B.k<﹣C.k<3D.k>﹣3
11.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是( )
A.B.C.D.
12.如图,矩形中,,交于点,,分别为,的中点.若,,则的度数为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=____.
14.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=_____.
15.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=_____.
16.点关于原点对称的点为_____.
17.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C距离地面的高度为2.5m,宽度AB为1m,则该圆形门的半径应为_____m.
18.已知实数m,n满足等式m2+2m﹣1=0,n2+2n﹣1=0,那么求的值是_____.
三、解答题(共78分)
19.(8分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路线为弧BD求图中阴影部分的面积.
20.(8分)在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为,小红在剩下的3个小球中随机摸出一个小球,记下数字为,这样确定了点的坐标.
(1)画树状图或列表,写出点所有可能的坐标;
(2)小明和小红约定做一个游戏,其规则为:若在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由.
21.(8分)如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,.
(1)求反比例函数的表达式与点D的坐标;
(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.
22.(10分)已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).
23.(10分)国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)请直接写出y关于x之间的关系式 ;
(2)设该商铺销售这批商品获得的总利润(总利润=总销售额一总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?
(3)若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是 .(可借助二次函数的图象直接写出答案)
24.(10分)网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.
(1)求该快递公司投递的快递件数的月平均增长率;
(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?
25.(12分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.
请根据图象中的信息解决下列问题:
(1)求与之间的函数表达式;
(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;
(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?
26.如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】根据抛物线与y轴交于点(0,3),可得出k的值为4,从而得出抛物线的解析式为,将(-2,3)代入即可判断正确与否,抛物线与x轴的交点A(1,0),因此得出三角形的面积为2,当x-3
相关试卷
这是一份重庆巴蜀常春藤2023-2024学年数学九上期末综合测试模拟试题含答案,共9页。试卷主要包含了如图,反比例函数的大致图象为等内容,欢迎下载使用。
这是一份2023-2024学年重庆市巴蜀常春藤学校八上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,若分式的值为零,则的值为等内容,欢迎下载使用。
这是一份2023-2024学年重庆巴蜀常春藤数学八上期末经典试题含答案,共7页。试卷主要包含了关于的一元二次方程的根的情况,下列命题的逆命题是真命题的是,下列语句中,是命题的为等内容,欢迎下载使用。