重庆市巴南区2022-2023学年数学九上期末经典试题含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为.若,求动点运动路径的长为( )
A.B.C.D.
2.若正方形的外接圆半径为2,则其内切圆半径为( )
A.2B.C.D.1
3.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?( )
A.1B.9C.16D.21
4.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形,它们分别是△P1A1O、△P2A2O、△P3A30,设它们的面积分别是S1、S2、S3,则( )
A.S1<S2<S3
B.S2<S1<S3
C.S3<S1<S2
D.S1=S2 =S3
5.用配方法解方程,变形后的结果正确的是( )
A.B.C.D.
6.已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是( )
A.1B.2C.3D.4
7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
A.B.2C.D.
8.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为( )
A.B.C.D.
9.方程的解是( )
A.B.,C.,D.
10.如图,在扇形纸片AOB中,OA =10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________
12.如图,已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果AD:DB=1:2,则CE:CF的值为____________.
13.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.
14.已知是方程的根,则代数式的值为__________.
15.已知在反比例函数图象的任一分支上,都随的增大而增大,则的取值范围是______.
16.如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段的中点,则的值为_____.
17.如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,连接BB′,则∠BAC′的度数为_____°.
18.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为__
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系xOy中,曲线经过点A.
(1)求曲线的表达式;
(2)直线y=ax+3(a≠0)与曲线围成的封闭区域为图象G.
①当时,直接写出图象G上的整数点个数是 ;(注:横,纵坐标均为整数的点称为整点,图象G包含边界.)
②当图象G内只有3个整数点时,直接写出a的取值范围.
20.(6分)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?
21.(6分)某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.
(1)求∠CAE的度数;
(2)求AE的长(结果保留根号);
(3)求建筑物AO的高度(精确到个位,参考数据:,).
22.(8分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)
23.(8分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.
(1)如果要实现每天2000元的销售利润,该如何确定销售单价?
(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?
24.(8分)如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)过点A作AM⊥BC于点M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的长.
25.(10分)某商场今年2月份的营业额为万元,3月份的营业额比2月份增加,月份的营业额达到万元.求3月份到5月份营业额的平均月增长率.
26.(10分)如图,正方形ABCD的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,点B在双曲线(x<0)上,点D在双曲线(x>0)上,点D的坐标是 (3,3)
(1)求k的值;
(2)求点A和点C的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、B
【分析】根据题意分析得出点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,过点P作OP⊥AB,取AQ的中点E作OE⊥AQ交PQ于点O,连接OA,设半径长为R,则根据勾股定列出方程求出R的值,再根据弧长计算公式l=求出l值即可.
【详解】解:依题意可知,点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,如图所示,连接PQ,取AQ的中点E作OE⊥AQ交直线PQ于点O,连接OA,OB.
∵P是AB的中点,
∴PA=PB=AB=6=3.
∵和是等边三角形,
∴AP=PC,PB=PD,∠APC=∠BPD=60°,
∴AP=PD,∠APD=120°.
∴∠PAD=∠ADP=30°,
同理可证:∠PBQ=∠BCP=30°,
∴∠PAD=∠PBQ.
∵AP=PB,
∴PQ⊥AB.
∴tan∠PAQ==
∴PQ= .
在Rt△AOP中,
即
解得:OA= .
∵sin∠AOP===
∴∠AOP=60°.
∴∠AOB=120°.
∴l=== .
故答案选B.
【点睛】
本题考查了弧长计算公式,等边三角形的性质,垂直平分线的性质,等腰三角形的性质,勾股定理,三角函数等知识,综合性较强,明确点Q的运动轨迹是一段弧是解题的关键.
2、B
【解析】试题解析:如图所示,连接OA、OE,
∵AB是小圆的切线,
∴OE⊥AB,
∵四边形ABCD是正方形,
∴AE=OE,
∴△AOE是等腰直角三角形,
故选B.
3、A
【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;
详解:如图,
由题意知:A(1,﹣2),C(2,﹣2),
分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,
∴a+b=1,
故选A.
点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.
4、D
【分析】由于P1、P2、P3是同一反比例图像上的点,则围成的三角形虽然形状不同,但面积均为.
【详解】根据反比例函数的k的几何意义,△P1A1O、△P2A2O、△P3A3O的面积相同,均为,所以S1=S2=S3,故选D.
【点睛】
本题考查反比例函数系数k的几何意义,过同一反比例上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,而围成的三角形的面积为,本知识点是中考的重要考点,应高度关注.
5、D
【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.
【详解】,
,
,
所以,
故选D.
【点睛】
本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.
6、C
【分析】根据图象可直接判断a、c的符号,再结合对称轴的位置可判断b的符号,进而可判断①;
抛物线的图象过点(3,0),代入抛物线的解析式可判断②;
根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;
根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.
【详解】解:①由图象可知:,,由于对称轴,∴,∴,故①正确;
②∵抛物线过,∴时,,故②正确;
③顶点坐标为:.由图象可知:,∵,∴,即,故③错误;
④由图象可知:,,∴,
∵,∴,
∴,故④正确;
故选:C.
【点睛】
本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、灵活运用数形结合的思想方法是解题的关键.
7、D
【解析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.
【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:
.
①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
解得:m=﹣1.
当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);
②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
解得:m=﹣1.
当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=,
或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,
∴m=,
∵m<0,
∴此种情形不合题意,
所以m+n=﹣1+=.
8、D
【解析】如图,∠ABC所在的直角三角形的对边AD=3,邻边BD=4,
所以,tan∠ABC= .
故选D.
9、B
【分析】用因式分解法求解即可得到结论.
【详解】∵x2﹣3x=0,
∴x(x﹣3)=0,
则x=0或x﹣3=0,
解得:,.
故选:B.
【点睛】
本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.
10、A
【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.
【详解】由题意得点O所经过的路线长.
故选A.
【点睛】
解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.
二、填空题(每小题3分,共24分)
11、 (1,2)
【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标.
【详解】解:∵点A关于原点的对称点的坐标是(-1,2),
∴点A的坐标是(1,-2),
∴点A关于x轴的对称点的坐标是(1,2),
故答案为:(1,2).
【点睛】
本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
12、
【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.
【详解】解:如图,连接DE,DF,
∵△ABC是等边三角形,
∴AB=BC=AC, ∠A=∠B=∠ACB=60°,
由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF
∵∠BDE=∠BDF+∠FDE=∠A+∠AED,
∴∠BDF+60°=∠AED+60°,
∴∠BDF=∠AED,
∵∠A=∠B,
∴△AED∽△BDF,
∴ ,
设AD=x,∵AD:DB=1:2,则BD=2x,
∴AC=BC=3x,
∵,
∴
∴
∴,
∴.
故答案为: .
【点睛】
本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.
13、6
【解析】符合条件的最多情况为:
即最多为2+2+2=6
14、1
【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.
【详解】解:把代入,得,
解得,
所以.
故答案是:1.
【点睛】
本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.
15、
【分析】根据反比例函数的图象与性质即可求出k的范围.
【详解】解:由题意可知:,
∴,
故答案为:.
【点睛】
本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.
16、2
【解析】先根据抛物线解析式求出点坐标和其对称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值.
【详解】解:∵抛物线与轴交于点,
∴,抛物线的对称轴为
∴顶点坐标为,点坐标为
∵点为线段的中点,
∴点坐标为
设直线解析式为(为常数,且)
将点代入得
∴
将点代入得
解得
故答案为:2
【点睛】
考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.
17、1
【分析】由图形选择的性质,∠BAC=∠B′AC′则问题可解.
【详解】解:∵Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,
∴∠BAC=∠B′AC′=40°,
∴∠BAC′=∠BAC+∠B′AC′=1°,
故答案为:1.
【点睛】
本题考查了图形旋转的性质,解答关键是应用旋转过程中旋转角不变的性质.
18、1
【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=-2(x-1)2+1.根据二次函数的性质来求最值即可.
【详解】解:∵y=﹣x2+x+2,
∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,
解得 x=2或x=﹣1
故设P(x,y)(2>x>0,y>0),
∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+1.
∴当x=1时,C最大值=1.
即:四边形OAPB周长的最大值为1.
【点睛】
本题主要考查二次函数的最值以及二次函数图象上点的坐标特征.设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+1.最后根据根据二次函数的性质来求最值是关键.
三、解答题(共66分)
19、(1)y=;(2)①3;②-1≤a-
【分析】(1)由题意代入A点坐标,求出曲线的表达式即可;
(2)①当时,根据图像直接写出图象G上的整数点个数即可;
②当图象G内只有3个整数点时,根据图像直接写出a的取值范围.
【详解】解:(1)∵A(1,1),
∴k=1,
∴.
(2)①观察图形时,可知个数为3;
②观察图像得到.
【点睛】
本题考查反比例函数图像相关性质,熟练掌握反比例函数图像相关性质是解题关键.
20、
【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.
【详解】解:建立平面直角坐标系.设二次函数的解析式为(a≠0).
∵图象经过点(2,-2),
∴-2=4a,
解得:.
∴.
当y=-3时,.
答:当水面高度下降1米时,水面宽度为米.
【点睛】
此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,难度一般.
21、(1)45°;(2);(3)29.
【分析】(1)先根据测得顶点A的仰角为75°,求出∠AEC的度数进而求∠CAE的度数;
(2)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;
(3)根据题干条件直接解直角三角形即可得到结论.
【详解】解:(1)由测得顶点A的仰角为75°,可知∠AEC=180°-75°=105°,又顶点A的仰角为30°即∠ACE=30°,所以∠CAE=180°-105°-30°=45°;
(2)延长CE交AO于点G,过点E作EF⊥AC垂足为F.
由题意可知:∠ACG=30°,∠AEG=75°,CE=40,
∴∠EAC=∠AEG-∠ACG=45°,
∵EF=CE×Sin∠FCE=20,
∴AE=,
∴AE的长度为m;;
(3)∵CF=CE×cs∠FCE=,AF=EF=20,
∴AC=CF+AF=+20,
∴AG=AC×Sin∠ACG=,
∴AO=AG+GO=+1.5=≈29,
∴高度AO约为29m.
【点睛】
本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.
22、无触礁的危险.
【分析】根据已知条件解直角三角形OAC可得A岛距离航线的最短距离AC的值,若AC>50,则无触礁危险,若AC<50,则有触礁危险.
【详解】解由题意得:∠AOC=30°,∠ABC=45°,∠ACO=90°, OB=40
∠BAC=45°,AC=BC
在Rt△OAC中,∠ACO=90°,∠AOC=30°,tan∠AOC=,
∴,
∴,.
因此无触礁的危险.
【点睛】
本题考查解直角三角形,由题意画出几何图形把实际问题转化为解直角三角形是解题关键.
23、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.
【分析】(1)根据题意列出方程,解一元二次方程即可;
(2)先根据利润=每件的利润×销售量表示出利润,然后利用二次函数的性质求最大值即可.
【详解】(1)依题意得:,
解得或(不合题意).
(2)若每天的利润为元,
则
,
∴当销售单价定为105元时,可获得最大利润,最大利润是2025元.
【点睛】
本题主要考查二次函数与一元二次方程的应用,掌握解一元二次方程的方法和二次函数的性质是解题的关键.
24、(1)证明见解析;(2);(3).
【分析】(1)利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以证明题目结论;
(2)根据相似三角形的性质和等腰三角形的性质定理,解答即可;
(3)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式求出AM的值,结合,即可求解.
【详解】(1)∵D是BC边上的中点,DE⊥BC,
∴BD=DC,∠EDB=∠EDC=90°,
∵DE=DE,
∴△BDE≌△EDC(SAS),
∴∠B=∠DCE,
∵AD=AC,
∴∠ADC=∠ACB,
∴△ABC∽△FCD;
(2)∵AD=AC,AM⊥DC,
∴DM=DC,
∵BD=DC,
∴,
∵DE⊥BC,AM⊥BC,
∴DE∥AM,
∴.
(3)过点A作AM⊥BC,垂足是M,
∵△ABC∽△FCD,BC=2CD,
∴,
∵S△FCD=5,
∴S△ABC=20,
又∵BC=10,
∴AM=1.
∵DE∥AM,
∴
∴,
∴DE=.
【点睛】
本题主要考查相似三角形的判定与性质定理,等腰三角形的性质定理,掌握相似三角形的判定和性质定理是解题的关键.
25、
【解析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设3月份到5月份营业额的平均增长率是x,则四月份的营业额是400(1+10%)(1+x),5月份的营业额是400(1+10%)(1+x)2,据此即可列方程求解.要注意根据实际意义进行值的取舍.
【详解】设月份至月份的营业额的平均月增长率为.
依题意,得: .
整理得: .
解得: (不合题意,舍去).
答:月份至月份的营业额的平均月增长率为.
【点睛】
可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
26、(1)k=9,(2)A(1,0), C(0,5).
【分析】(1)根据反比例函数过点D,将坐标代入即可求值,(2)利用全等三角形的性质,计算AM,AN,CH的长即可解题.
【详解】解:将点D代入中,
解得:k=9,
(2)过点B作BN⊥x轴于N, 过点D作DM⊥x轴于M,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∵∠BAN+∠ABN=90°,
∴∠BAN=∠ADM,
∴△ABN≌△DAM(AAS),
∴DM=AN=3,
设A(a,0),
∴N(a-3,0),
∵B在 上,
∴BN==AM,
∵OM=a=3,整理得:a2-6a+5=0,
解得:a=1或a=5(舍去),
经检验,a=1是原方程的根,
∴A(1,0),
过点D作DH⊥Y轴于H,
同理可证明△DHC≌△DMA,
∴CH=AM=2,
∴C(0,5),
综上, A(1,0), C(0,5).
【点睛】
本题考查了反比例函数的性质,三角形的全等,难度较大,作辅助线,通过全等得到长度是解题关键.
2023-2024学年重庆市巴南区科学城中学九年级(上)开学数学试卷(含解析): 这是一份2023-2024学年重庆市巴南区科学城中学九年级(上)开学数学试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年重庆市巴南区八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。