浙江省衢州市常山县2022-2023学年数学九上期末考试试题含解析
展开
这是一份浙江省衢州市常山县2022-2023学年数学九上期末考试试题含解析,共22页。试卷主要包含了等于等内容,欢迎下载使用。
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为( )
A.23°B.70°C.77°D.80°
2.下列说法正确的是( )
A.经过三点可以做一个圆B.平分弦的直径垂直于这条弦
C.等弧所对的圆心角相等D.三角形的外心到三边的距离相等
3.掷一枚质地均匀的硬币10次,下列说法正确的是( )
A.每2次必有一次正面朝上B.必有5次正面朝上
C.可能有7次正面朝上D.不可能有10次正面朝上
4.用配方法解方程时,配方后所得的方程为( )
A.B.C.D.
5.如图,以△ABC的三条边为边,分别向外作正方形,连接EF,GH,DJ,如果△ABC的面积为8,则图中阴影部分的面积为( )
A.28B.24C.20D.16
6.等于( )
A.B.2C.3D.
7.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是( )
A.B.C.D.
8.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①②B.①③④C.①②③⑤D.①②③④⑤
9.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
10.如图,AB是圆O的直径,CD是圆O的弦,若,则( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.一个反比例函数的图像过点,则这个反比例函数的表达式为__________.
12.抛物线y=x2+2x+3的顶点坐标是_____________.
13.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
给出了结论:
(1)二次函数y=ax2+bx+c有最小值,最小值为-3;
(2)当-<x<2时,y<0;
(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论是_________ (填上正确的序号)
14.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为__
15.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.
16.如图,在矩形中,. 若将绕点旋转后,点落在延长线上的点处,点经过的路径为,则图中阴影部分的面积为______.
17.如图,在中,,为边上的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则的长为____________.
18.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为 (度).
三、解答题(共66分)
19.(10分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠. 各商场的优惠条件如下:
甲商场优惠条件:第一台按原价收费,其余的每台优惠;
乙商场优惠条件:每台优惠.
设公司购买台电脑,选择甲商场时, 所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.
什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?
20.(6分)为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.
(1)该社区九月份购买甲、乙两种绿色植物各多少盆?
(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.
21.(6分)已知关于的方程有两个不相等的实数根.
(1)求的取值范围;
(2)若,求的值.
22.(8分)如图,点在上,,交于点,点为射线上一动点, 平分,连接.
(1)求证:;
(2)连接,若,则当_______时,四边形是矩形.
23.(8分)如图,已知抛物线 y=x2+2x 的顶点为 A,直线 y=x+2 与抛物线交于 B,C 两点.
(1)求 A,B,C 三点的坐标;
(2)作 CD⊥x 轴于点 D,求证:△ODC∽△ABC;
(3)若点 P 为抛物线上的一个动点,过点 P 作 PM⊥x 轴于点 M,则是否还存在除 C 点外的其他位置的点,使以 O,P,M 为顶点的三角形与△ABC 相似? 若存在,请求出这样的 P 点坐标;若不存在,请说明理由.
24.(8分)如图,一次函数y1=x+2的图象与反比例函数y2=(k≠0)的图象交于A、B两点,且点A的坐标为(1,m).
(1)求反比例函数的表达式及点B的坐标;
(2)根据图象直接写出当y1>y2时x的取值范围.
25.(10分)如图,已知为⊙的直径,为⊙的一条弦,点是⊙外一点,且,垂足为点,交⊙于点,的延长线交⊙于点,连接.
(1)求证:;
(2)若,求证:是⊙的切线;
(3)若,,求⊙的半径.
26.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图(1),在中,点在线段上,,,,,求的长.经过社团成员讨论发现:过点作,交的延长线于点,通过构造就可以解决问题,如图(2).请回答:______.
(2)求的长.
(3)请参考以上解决思路,解决问题:如图(3),在四边形中,对角线与相交于点,,,,,求的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.
【详解】解:∵AB∥CD,∠C=27°,
∴∠ABC=∠C=27°,
∵∠A=50°,
∴∠AEB=180°﹣27°﹣50°=103°,
∴∠AEC=180°﹣∠AEB=77°,
故选:C.
【点睛】
本题主要考查平行线的性质,三角形的内角和定理,掌握平行线的性质是解题的关键.
2、C
【解析】根据确定圆的条件、垂径定理的推论、圆心角、弧、弦的关系、三角形的外心的知识进行判断即可.
【详解】解:A、经过不在同一直线上的三点可以作一个圆,A错误;
B、平分弦(不是直径)的直径垂直于这条弦,B错误;
C、等弧所对的圆心角相等,C正确;
D、三角形的外心到各顶点的距离相等,D错误;
故选:C.
【点睛】
本题考查的是圆心角、弧、弦的关系、确定圆的条件、垂径定理的推论和三角形外心的知识,掌握相关定理并灵活运用是解题的关键.
3、C
【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.
【详解】解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
所以掷一枚质地均匀的硬币10次,
可能有7次正面向上;
故选:C.
【点睛】
本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.
4、D
【解析】根据配方的正确结果作出判断:
.
故选D.
5、B
【分析】过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,根据全等三角形的性质得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到结论.
【详解】解:过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,
∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,
∴∠EAM=∠CAB
∵四边形ACDE、四边形ABGF是正方形,
∴AC=AE,AF=AB,
∴∠EAM≌△CAN,
∴EM=CN,
∵AF=AB,
∴S△AEF=AF•EM,S△ABC=AB•CN=8,
∴S△AEF=S△ABC=8,
同理S△CDJ=S△BHG=S△ABC=8,
∴图中阴影部分的面积=3×8=24,
故选:B.
【点睛】
本题主要考查了正方形的性质,全等三角形判定和性质,正确的作辅助线是解题的关键.
6、A
【分析】先计算60度角的正弦值,再计算加减即可.
【详解】
故选A.
【点睛】
本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键.
7、C
【解析】根据简单几何体的三视图即可求解.
【详解】三视图的俯视图,应从上面看,故选C
【点睛】
此题主要考查三视图的判断,解题的关键是熟知三视图的定义.
8、C
【分析】根据二次函数的性质逐项分析可得解.
【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,
则①当x=1时,y=a+b+c<0,正确;
②当x=-1时,y=a-b+c>1,正确;
③abc>0,正确;
④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
故所有正确结论的序号是①②③⑤.
故选C
9、B
【分析】根据平均数、方差的定义计算即可.
【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,
∴40人的平均数是90分,
∵39人的方差为1,小亮的成绩是90分,40人的平均分是90分,
∴40人的方差为[1×39+(90-90)2]÷40
相关试卷
这是一份2022-2023学年浙江省衢州市九年级(上)期中数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年浙江省衢州市常山县七下数学期末考试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,如果点P,下列说法中,错误的是,下列各组数中,不是勾股数的是,如图,在中,,,则的度数是,下列运算错误的是等内容,欢迎下载使用。
这是一份2022-2023学年浙江省衢州市常山县等四地七年级(下)期末数学试卷(含解析),共17页。