浙江省台州市天台县坦头中学2022年九年级数学第一学期期末检测试题含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.方程的根是( )
A.B.C.D.
2.如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离均为,以点为圆心,分别以···为半径画弧,分别交轴, ···于点···则点的坐标为( )
A.B.
C.D.
3.在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是( )
A.B.C.D.
4.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是
A.B.C.D.
5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.B.C.D.
6.已知是一元二次方程的一个解,则m的值是
A.1B.C.2D.
7.下列事件中,属于必然事件的是( )
A.明天我市下雨
B.抛一枚硬币,正面朝上
C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数
D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球
8.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为( )
A.B.C.D.
9.如图,在中,,,折叠使得点落在边上的点处,折痕为. 连接、,下列结论:①△是等腰直角三角形;②;③ ;④.其中正确的个数是( )
A.1B.2C.3D.4
10.如图,经过原点的⊙与轴分别交于两点,点是劣弧上一点,则( )
A.是锐角B.是直角C.是钝角D.大小无法确定
11.如图所示的物体组合,它的左视图是( )
A.B.C.D.
12.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
A.AB=CDB.AB=BCC.AC⊥BDD.AC=BD
二、填空题(每题4分,共24分)
13.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.
14.如图,A是反比例函数y=(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=的图象经过点B1,则k的值是_____.
15.已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间 (单位:秒)满足下面的函数关系: .那么测试实验中该汽车从开始刹车到完全停止,共行驶了_________米.
16.△ABC中,∠C=90°,AC=6,BC=8,则sin∠A的值为__________.
17.如图,三个顶点的坐标分别为, 点为的中点.以点为位似中心,把或缩小为原来的,得到,点为的中点,则的长为________.
18.代数式有意义时,x应满足的条件是______.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点A、B、C的坐标分别为(1,﹣4)、(5,﹣4)、(4,﹣1).
(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1的坐标;
(2)将△A1B1C1绕顶点A1逆时针旋转90°后得到对应的△A1B2C2,画出△A1B2C2,并求出线段A1C1扫过的面积.
20.(8分)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cs35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)
21.(8分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价( 元/件 )的关系如下表:
设这种产品在这段时间内的销售利润为(元),解答下列问题:
(1)如是的一次函数,求与的函数关系式;
(2)求销售利润与销售单价之间的函数关系式;
(3)求当为何值时,的值最大?最大是多少?
22.(10分)如图,一次函数的图象与反比例函数的图象交于,两点.
(1)求一次函数和反比例函数的表达式;
(2)直接写出的面积 .
23.(10分)如图,直线与双曲线在第一象限内交于两点,已知.
求的值及直线的解析式;
根据函数图象,直接写出不等式的解集.
24.(10分)如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.
(1)请直接写出y与x之间的函数关系式;
(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.
25.(12分)综合与探究:
如图,将抛物线向右平移个单位长度,再向下平移个单位长度后,得到的抛物线,平移后的抛物线与轴分别交于,两点,与轴交于点.抛物线的对称轴与抛物线交于点.
(1)请你直接写出抛物线的解析式;(写出顶点式即可)
(2)求出,,三点的坐标;
(3)在轴上存在一点,使的值最小,求点的坐标.
26.先化简,再求值:1- ,其中a、b满足 .
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】根据因式分解法,可得答案.
【详解】解:
解得:,,
故选:.
【点睛】
本题考查了解一元二次方程,因式分解是解题关键.注意此题中方程两边不能同时除以,因为可能为1.
2、C
【分析】根据题意,利用勾股定理求出,,,,的纵坐标,得到各点坐标,找到规律即可解答.
【详解】如图,连接、、,
点的纵坐标为,点的坐标为 ,
点的纵坐标为,点的坐标为 ,
点的纵坐标为,点的坐标为 ,
点的纵坐标为,
点的坐标为 ,
∴点的坐标为 ,
故选:C
【点睛】
本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键.
3、C
【解析】试题解析:由题意知:1000人中有120人看中央电视台的早间新闻,
∴在该镇随便问一人,他看早间新闻的概率大约是.
故选C.
【点睛】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
4、C
【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.
【详解】如图作,FN∥AD,交AB于N,交BE于M.
∵四边形ABCD是正方形,
∴AB∥CD,∵FN∥AD,
∴四边形ANFD是平行四边形,
∵∠D=90°,
∴四边形ANFD是矩形,
∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
∵AN=BN,MN∥AE,
∴BM=ME,
∴MN=a,
∴FM=a,
∵AE∥FM,
∴,
故选C.
【点睛】
本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.
5、B
【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
【详解】画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为;
故选B.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
6、A
【解析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.
【详解】把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1.
故选A.
【点睛】
本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.
7、D
【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.
【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,
一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,
故选:D.
【点睛】
本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.
8、B
【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.
【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,
解得m<.
故选B.
【点睛】
此题考查了一元二次方程根的判别式.
9、C
【分析】根据折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质、三角形的面积公式逐个判断即可得.
【详解】由折叠的性质得:
又
在中,
即,则是等腰直角三角形,结论①正确
由结论①可得:
,则结论②正确
,则结论③正确
如图,过点E作
由结论①可得:是等腰直角三角形,
由勾股定理得:
,则结论④错误
综上,正确的结论有①②③这3个
故选:C.
【点睛】
本题考查了折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质等知识点,熟记并灵活运用各定理与性质是解题关键.
10、B
【分析】根据圆周角定理的推论即可得出答案.
【详解】∵和对应着同一段弧 ,
∴,
∴是直角.
故选:B.
【点睛】
本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.
11、D
【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.
【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,
则如图所示的物体组合的左视图如D选项所示,
故选:D.
【点睛】
本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.
12、D
【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.
【详解】添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.
【点睛】
考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.
二、填空题(每题4分,共24分)
13、
【分析】先得出抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),然后根据顶点式写出平移后的抛物线解析式.
【详解】解:抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),所以平移后的抛物线解析式为:.
故答案为:.
【点睛】
本题考查的知识点是二次函数图象与几何变化,熟记点的平移规律是解此题的关键.
14、-1
【分析】过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,则可证明△OB1F∽△OAE,设A(m,n),B1(a,b),根据三角形相似和等腰三角形的性质求得m=.n=-a,再由反比例函数k的几何意义,可得出k的值.
【详解】过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,
∵等腰直角△ABO绕点O以逆时针旋转135°,
∴∠AOB1=90°,
∴∠OB1F=∠AOE,
∵∠OFB1=∠AEF=90°,
∴△OB1F∽△OAE,
∴==,
设A(m,n),B1(a,b),
∵在等腰直角三角形OAB中,=,OB=OB1,
∴==,
∴m=b.n=﹣a,
∵A是反比例函数y=(x>0)图象上一点,
∴mn=4,
∴﹣a•b=4,解得ab=﹣1.
∵反比例函数y=的图象经过点B1,
∴k=﹣1.
故答案为:﹣1.
【点睛】
本题考查了反比例函数k的几何意义及旋转的性质,等腰直角三角形的性质,反比例函数k的几何意义是本题的关键.
15、1
【分析】此题利用配方法求二次函数最值的方法求解即可;
【详解】∵,
∴汽车刹车后直到停下来前进了1m.
故答案是1.
【点睛】
本题主要考查了二次函数最值应用,准确化简计算是解题的关键.
16、
【分析】根据勾股定理及三角函数的定义直接求解即可;
【详解】如图,,
∴sin∠A,
故答案为:
【点睛】
本题考查了三角函数的定义及勾股定理,熟练掌握三角函数的定义是解题的关键.
17、或
【分析】分两种情形画出图形,即可解决问题.
【详解】解:如图,在Rt△AOB中,OB==10,
①当△A'OB'在第四象限时,OM=5,OM'=,∴MM'=.
②当△A''OB''在第二象限时,OM=5,OM"=,∴MM"=,
故答案为或.
【点睛】
本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
18、.
【解析】直接利用二次根式的定义和分数有意义求出x的取值范围.
【详解】解:代数式有意义,可得:,所以,
故答案为:.
【点睛】
本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
三、解答题(共78分)
19、(1)详见解析;(2)图详见解析,
【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;
(2)根据题意,作出对应点,然后顺次连接即可得到图形,再根据扇形的面积公式即可求出面积.
【详解】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为:(-1,4);
(2)如图所示,△A1B2C2即为所求;
.
所以,线段A1C1扫过的面积=.
【点睛】
本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.
20、吊灯AB的长度约为1.1米.
【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC中利用正弦和正切函数求出AE长和BE长,即可求解.
【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,
∵∠BDE=60°,∠DCB=30°,
∴∠CBD=60°﹣30°=30°,
∴∠DCB=∠CBD,
∴BD=CD=6(米)
在Rt△BDE中,sin∠BDE=,
∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),
DE=BD=3(米),
在Rt△AEC中,tan∠ACE=,
∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),
∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),
∴吊灯AB的长度约为1.1米.
【点睛】
本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.
21、(1);(2);(3)当时,的值最大,最大值为9000元
【分析】(1)根据待定系数法即可求出一次函数解析式;
(2)根据题意列出二次函数即可求解;
(3)根据二次函数的性质即可得到最大值.
【详解】(1)设与的函数关系式为y=kx+b
把(15,550)、(20,500)代入得
解得
∴
(2)∵成本为10元,故每件利润为(x-10)
∴销售利润
(3)=
∵-10<0,
∴当时,的值最大,最大值为9000元.
【点睛】
本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.
22、(1)y=﹣x+5,y=;(2)
【分析】(1)由点B在反比例函数图象上,可求出点B的坐标,将点A的坐标代入反比例函数即可求出反比例函数解析式;将点A和点B的坐标代入一次函数y=k1x+b即可求出一次函数解析式;
(2)延长AB交x轴与点C,由一次函数解析式可找出点C的坐标,通过分割图形利用三角形的面积公式即可得出结论;
【详解】⑴解:将A(1,4)代入y=,
得k2=4,
∴该反比例函数的解析式为y=,
当x=4时代入该反比例函数解析式可得y=1,即点B的坐标为(4,1),
将A(1,4)B(4,1)代入y=k1x+b中,
得,
解得k1=﹣1,b=5,
∴该一次函数的解析式为y=﹣x+5;
(2)设直线y=﹣x+5与x轴交于点C,如图,
当y=0时,−x+5=0,
解得:x=5,
则C(5,0),
∴S△AOB=S△AOC−S△BOC=×5×4−×5×1=.
【点睛】
本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形的面积公式以及解二元一次方程组,掌握知识点是解题的关键.
23、(1),;(2)或.
【分析】 ⑴ 将点 A(1,m)B(2,1)代入y2得出k2,m;再将A,B坐标代入y1中,求出即可;
⑵ 直接根据函数图像写出答案即可.
【详解】解:点在双曲线上,
双曲线的解析式为
在双曲线上,
,
直线过两点,
,解得,
直线的解析式为.
根据函数图象可知,不等式的解集为或.
【点睛】
此题主要考查了一次函数与反比例函数交点问题,已知一个交点坐标先求出反比例函数的解析式是解题的关键.
24、 (1) y=-x2+3x;(2) 当x=3时,y有最大值,为4.5.
【解析】分析:(1)由矩形的周长为12,AB=x,结合矩形的性质可得BC=6-x,然后由E,F,G,H为矩形ABCD的各边中点可得四边形EFGH的面积是矩形面积的一半,从而列出函数关系式;
(2)由关系式为二次函数以及二次项系数小于0可得四边形EFGH的面积有最大值,然后利用配方法将抛物线的解析式写成顶点式,从而得到x取什么值时,y取得最大值,以及最大值是多少.
详解:(1)∵矩形ABCD的周长为12,AB=x,
∴BC=×12-x=6-x.
∵E,F,G,H为矩形ABCD的各边中点,
∴y=x(6-x)=-x2+3x,
即y=-x2+3x.
(2)y=-x2+3x=- (x-3)2+4.5,
∵a=-<0,
∴y有最大值,
当x=3时,y有最大值,为4.5.
点睛:本题是一道有关二次函数应用的题目,解题的关键是依据矩形的性质结合已知列出二次函数关系式,然后利用二次函数的最值解决问题.
25、(1);(2),,;(3).
【分析】(1)可根据二次函数图像左加右减,上加下减的平移规律进行解答.
(2)令x=0即可得到点C的坐标,令y=0即可得到点B,A的坐标
(3)有图像可知的对称轴,即可得出点D的坐标;由图像得出的坐标,设直线的解析式为,代入数值,即可得出直线的解析式,就可以得出点P的坐标.
【详解】解:(1)二次函数向右平移个单位长度得,,
再向下平移个单位长度得
故答案为:.
(2)由抛物线的图象可知,
.
当时,,
解得:,.
,.
(3)由抛物线的图象可知,
其对称轴的为直线,
将代入抛物线,可得
.
由抛物线的图象可知,
点关于抛物线的对称轴轴的对称点为.
设直线的解析式为,
解得:
直线直线的解析式为
与轴交点即为点,
.
【点睛】
本题考查了二次函数的综合,熟练掌握二次函数的性质及图形是解题的关键.
26、,.
【解析】试题分析:首先化简分式,然后根据a、b满足的关系式,求出a、b的值,再把求出的a、b的值代入化简后的算式,求出算式的值是多少即可.
试题解析:解:原式====
∵a、b满足,∴a﹣=0,b+1=0,∴a=,b=﹣1,当a=,b=﹣1时,原式==.
点睛:此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
15
20
25
30
550
500
450
400
2023-2024学年浙江省台州市天台县坦头中学九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年浙江省台州市天台县坦头中学九年级数学第一学期期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列方程中没有实数根的是等内容,欢迎下载使用。
2023-2024学年浙江省台州市天台县坦头中学数学八上期末综合测试模拟试题含答案: 这是一份2023-2024学年浙江省台州市天台县坦头中学数学八上期末综合测试模拟试题含答案,共6页。试卷主要包含了若分式的值为0,则的值为,分式有意义,x的取值范围是,若m+=5,则m2+的结果是等内容,欢迎下载使用。
浙江省台州市坦头中学2023-2024学年八上数学期末复习检测模拟试题含答案: 这是一份浙江省台州市坦头中学2023-2024学年八上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,两个三角形如果具有下列条件,如图,,,等内容,欢迎下载使用。