2025年高考数学一轮复习-第六板块-函数与导数-微专题(五)大题专攻——“函数与导数”大题的规范解题路径【课件】
展开
这是一份2025年高考数学一轮复习-第六板块-函数与导数-微专题(五)大题专攻——“函数与导数”大题的规范解题路径【课件】,共28页。
二、高频考法精研:有关x与ex,ln x的组合函数的解题技法 有关x与ex,ln x的组合函数是高考的常考内容,常将基本初等函数的概念、图象与性质糅合在一起,发挥导数的工具作用,应用导数研究函数性质、证明相关不等式(或比较大小)、求参数的取值范围(或最值)等.熟悉与x,ex,ln x有关的函数图象特征,在解答相关问题时做到“有形可寻”,对解题大有帮助.
[例1] 已知函数f(x)=ex-ax2,若a=1,证明:当x≥0时,f(x)≥1.
技法三 借助ln x≤x-1或ex≥x+1进行放缩[例3] 已知函数f(x)=xex-aln x(e为自然对数的底数,e=2.718…).(1)若f(x)在(0,1)上单调递减,求实数a的取值范围;(2)当a=-1时,设g(x)=x[f(x)-xex]-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.
设h(x)=(x2+x)ex,x∈(0,1),则h′(x)=ex(x2+3x+1),当x∈(0,1)时,x2+3x+1>0,则h′(x)>0,所以h(x)在(0,1)上单调递增,所以h(x)
相关课件
这是一份2025年高考数学一轮复习-第六板块-函数与导数-微专题(四)导数与函数的零点问题【课件】,共34页。
这是一份2025年高考数学一轮复习-第六板块-函数与导数-微专题(三)导数小题中的综合问题【课件】,共32页。PPT课件主要包含了关键点拨等内容,欢迎下载使用。
这是一份2025年高考数学一轮复习-第六板块-函数与导数-微专题(二)函数的方程及实际应用【课件】,共32页。PPT课件主要包含了关键点拨,答案D等内容,欢迎下载使用。