高中数学北师大版 (2019)必修 第一册2.2 分层随机抽样课文ppt课件
展开必备知识·情境导学探新知
分层随机抽样的定义是什么?有什么特点?
思考(1)某市为调查中小学生的近视情况,在全市范围内分别对小学生、初中生、高中生三个群体抽样,进而了解中小学生的总体情况和三个群体近视情况的差异大小.在抽取样本时可以用简单随机抽样吗?为什么?(2)简单随机抽样和分层随机抽样有什么区别和联系?
[提示] (1)在此总体中,小学生、初中生、高中生三个群体在年龄、体质、近视情况等方面存在着明显的差异.若采用简单随机抽样,抽取的样本可能集中于某一个群体,不具有代表性.(2)区别:简单随机抽样是从总体中逐个抽取样本;分层随机抽样则首先将总体分成几层,在各层中按同一抽样比抽取样本.联系:(1)抽样过程中每个个体被抽到的可能性相等;(2)每次抽出个体后不再将它放回,即不放回抽样.
体验1.下列抽样调查中,最适合用分层随机抽样方法抽样的是( )A.某礼堂有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后,为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某地区农田有山地8 000亩,丘陵12 000亩,平原24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验
C [A的总体容量较大,但个体之间的差异不明显,不宜采用分层随机抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C的总体容量较大,且各类田地的产量差别很大,宜采用分层随机抽样方法;D与B类似,宜采用简单随机抽样法.]
体验2.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,拟采用分层随机抽样的方法从他们中抽取一个容量为42的样本,则老年人、中年人、青年人分别应抽取的人数是( )A.7,11,18 B.6,12,18C.6,13,17 D.7,14,21
关键能力·合作探究释疑难
类型1 对分层随机抽样概念的理解【例1】 分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体等可能抽样,必须进行( )A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同
C [保证每个个体等可能的被抽取是分层随机抽样的基本特征,为了保证这一点,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.]
反思领悟 1.用分层随机抽样的前提分层随机抽样的适用前提条件是总体可以分层、层与层之间有明显区别,而层内个体间差异较小.2.用分层随机抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;(2)分层随机抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.
[跟进训练]1.下列问题中,最适合用分层随机抽样抽取样本的是( )A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1 000名工人中,抽取100人调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量
B [A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,不适合用分层随机抽样;B中总体所含个体差异明显,适合用分层随机抽样.]
类型2 分层随机抽样的应用【例2】 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层随机抽样的方法抽取,写出抽样过程.
反思领悟 分层随机抽样的步骤
[跟进训练]2.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.
[解] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层随机抽样的方法.具体过程如下:第一步,将3万人分为5层,其中一个乡镇为一层.第二步,按照样本容量的比例求得各乡镇应抽取的人数分别为60人,40人,100人,40人,60人.第三步,按照各层抽取的人数随机抽取各乡镇应抽取的样本.第四步,将300人合到一起,即得到一个样本.
类型3 分层随机抽样中的计算问题【例3】 (1)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查,假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808 C.1 212 D.2 012(2)将一个总体分为A,B,C三层,其个体数之比为5∶3∶2.若用分层随机抽样方法抽取容量为100的样本,则应从C中抽取________个个体.
2.在本例(2)中,把条件“其个体数之比为5∶3∶2”换为“已知A层的个体数为200,且从中抽取的样本数为10”,其余不变,则总体容量是多少?
[跟进训练]3.某网站针对“2024年法定节假日调休安排”提出的A,B,C三种放假方案进行了问卷调查,调查结果如下:
(1)从所有参与调查的人中,用分层随机抽样的方法抽取n人,已知从支持A方案的人中抽取了6人,求n的值;(2)从支持B方案的人中,用分层随机抽样的方法抽取5人,这5人中在35岁以上(含35岁)的人数是多少?35岁以下的人数是多少?
学习效果·课堂评估夯基础
1.思考辨析(正确的画“√”,错误的画“×”)(1)在统计实践中选择哪种抽样方法关键是看总体容量的大小.( )(2)分层随机抽样中,个体数量较少的层抽取的样本数量较少,这是不公平的.( )(3)从全班50名同学中抽取5人调查作业完成情况适合用分层随机抽样( )
[提示] (1)错误.在统计实践中选择哪种抽样方法除看总体和样本容量大小外,还要依据总体的构成情况.(2)错误. 根据抽样的意义,对每个个体都是公平的.(3)错误.适合用简单随机抽样.
2.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A.简单随机抽样 B.抽签法C.随机数法 D.分层随机抽样
D [从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样.]
3.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层随机抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A.30 B.25 C.20 D.15
4.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件、80件、60件.为了解它们的产品质量是否存在显著差异,用分层随机抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=________.
高中2.2 分层随机抽样优秀课件ppt: 这是一份高中<a href="/sx/tb_c4000440_t3/?tag_id=26" target="_blank">2.2 分层随机抽样优秀课件ppt</a>,共17页。PPT课件主要包含了导入课题,分层随机抽样,新知探究,典例剖析,抽样方法的判断,分层随机抽样的应用,课堂小结,课后作业等内容,欢迎下载使用。
北师大版 (2019)2.2 分层随机抽样优质课课件ppt: 这是一份北师大版 (2019)2.2 分层随机抽样优质课课件ppt,文件包含北师大版高中数学必修第一册622分层随机抽样课件pptx、北师大版高中数学必修第一册622分层随机抽样同步练习含答案docx等2份课件配套教学资源,其中PPT共24页, 欢迎下载使用。
北师大版 (2019)必修 第一册2.2 分层随机抽样教学ppt课件: 这是一份北师大版 (2019)必修 第一册2.2 分层随机抽样教学ppt课件,共28页。