搜索
    上传资料 赚现金
    英语朗读宝

    高中数学必修第一册《单元分层过关检测》第5章三角函数单元测试A含解析答案

    高中数学必修第一册《单元分层过关检测》第5章三角函数单元测试A含解析答案第1页
    高中数学必修第一册《单元分层过关检测》第5章三角函数单元测试A含解析答案第2页
    高中数学必修第一册《单元分层过关检测》第5章三角函数单元测试A含解析答案第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学必修第一册《单元分层过关检测》第5章三角函数单元测试A含解析答案

    展开

    这是一份高中数学必修第一册《单元分层过关检测》第5章三角函数单元测试A含解析答案,共18页。
    第五章 三角函数单元测试A学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列与角的终边相同的角的表达式中正确的是(    )A. B.C. D.2.若,则的化简结果是(    )A. B. C. D.3.已知,且,则(    )A. B. C. D.4.函数f(x)=在[—π,π]的图像大致为A. B.C. D.5.已知,且,则(    )A. B.C. D.6.若,则(    )A. B.C. D.7.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则(    )A. B.C. D.8.达·芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于(    )A. B. C. D.二、多选题9.下列结论正确的是(    )A.是第三象限角B.若圆心角为的扇形的弧长为,则该扇形的面积为C.若角的终边上有一点,则D.若角为锐角,则角为钝角10.设函数,则下列结论中正确的是(    )A.的图象关于点对称 B.的图象关于直线对称C.在上单调递减 D.在上的最小值为011.如图,一圆形摩天轮的直径为100米,圆心O到水平地面的距离为60米,最上端的点记为Q,现在摩天轮开始逆时针方向匀速转动,30分钟转一圈,以摩天轮的中心为原点建立平面直角坐标系,则下列说法正确的是(    )A.点Q距离水平地面的高度与时间的函数为B.点Q距离水平地面的高度与时间的函数的对称中心坐标为C.经过10分钟点Q距离地面35米D.摩天轮从开始转动一圈,点Q距离水平地面的高度不超过85米的时间为20分钟三、填空题12.已知都是锐角,,则 .13.记函数的最小正周期为T,若,为的零点,则的最小值为 .14.已知函数,如图A,B是直线与曲线的两个交点,若,则 .  四、解答题15.《九章算术》是我国古代的数学巨著,其中《方田》章给出了“弧田”,“弦”和“矢”的定义,“弧田”(如图阴影部分所示)是由圆弧和弦围成,“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.(1)当圆心角为,矢为2的弧田,求:弧田(如图阴影部分所示)的面积;(2)已知如图该扇形圆心角是,半径为,若该扇形周长是一定值当为多少弧度时,该扇形面积最大?16.已知.(1)化简函数;(2)若,求和的值.17.已知函数(1)求函数的最小正周期;(2)函数的单调递增区间和对称轴方程.(3)求函数f(x)在区间上的最大值和最小值.18.已知函数的一段图象过点,如图所示.(1)求函数的表达式;(2)将函数的图象向右平移个单位,得函数的图象,求在区间上的值域;(3)若,求的值.19.定义:若函数的定义域为D,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期.(1)下列函数(其中表示不超过x的最大整数),是线周期函数的是____________(直接填写序号);(2)若为线周期函数,其线周期为,求证:为周期函数;(3)若为线周期函数,求的值. 参考答案:1.C【分析】根据终边相同的角的表示方法,以及角度和弧度的用法要求,分别判断各选项,可得答案.【详解】对于A,B,,中角度和弧度混用,不正确;对于C,因为与是终边相同的角,故与角的终边相同的角可表示为,C正确;对于D,,不妨取,则表示的角与终边不相同,D错误,故选:C2.D【分析】根据同角平方和的关系,结合角的范围即可化简求解.【详解】,由于,所以,故,故选:D3.C【分析】根据已知可求得,根据同角三角函数的基本关系,即可得出答案.【详解】由已知可得,,所以.因为,所以,.所以,.故选:C.4.D【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.【详解】由,得是奇函数,其图象关于原点对称.又.故选D.【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.5.A【分析】用二倍角的余弦公式,将已知方程转化为关于的一元二次方程,求解得出,再用同角间的三角函数关系,即可得出结论.【详解】,得,即,解得或(舍去),又.故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.6.C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:,即:,即:所以故选:C[方法二]:特殊值排除法解法一:设β=0则sinα +cosα =0,取,排除A, B;再取α=0则sinβ +cosβ= 2sinβ,取β,排除D;选C.[方法三]:三角恒等变换 所以即故选:C.7.B【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到,即得,再利用换元思想求得的解析表达式;解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,根据已知得到了函数的图象,所以,令,则,所以,所以;解法二:由已知的函数逆向变换,第一步:向左平移个单位长度,得到的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,即为的图象,所以.故选:B.8.A【解析】由已知,设.可得.于是可得,进而得出结论.【详解】解:依题意,设.则.,.设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.则,.故选:A.【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.9.BC【分析】利用象限角的定义可判断A选项;利用扇形的面积公式可判断B选项;利用三角函数的定义四可判断C选项;取可判断D选项.【详解】对于A选项,因为且为第二象限角,故是第二象限角,A错;对于B选项,若圆心角为的扇形的弧长为,则该扇形的半径为,因此,该扇形的面积为,B对;对于C选项,若角的终边上有一点,则,C对;对于D选项,因为为锐角,不妨取,则为直角,D错.故选:BC.10.ABC【分析】AB选项,代入检验是否是对称中心和对称轴,C选项,求出,由数形结合验证单调性,D选项,求出,结合求出最小值.【详解】当时,,所以的图象关于点对称,A正确;当时,,所以的图象关于直线对称,B正确;当时,,在上单调递减,故C正确;当时,,在上的最小值为,D错误.故选:ABC11.CD【分析】由题可知,摩天轮转一圈用30分钟,则OQ在分钟转过的角为,即可得OQ为终边的角,进而判断A选项;对称中心的横坐标满足,即可判断B选项;将代入点Q距离水平地面的高度与时间的函数中,即可判断C选项;令,求解即可判断D选项.【详解】由题意知,OQ在分钟转过的角为,所以以OQ为终边的角为,所以点Q距离水平地面的高度与时间的关系为,故A错误;由,得,所以不是对称中心,故B错误;经过10分钟,,故C正确;由,得,得,解得,共20分钟,故D正确.故选:CD12./【分析】要求,先求,结合已知可有,利用两角差的余弦公式展开可求.【详解】、为锐角,,,由于为锐角,故答案为: 13.【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;【详解】解: 因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:14.【分析】设,依题可得,,结合的解可得,,从而得到的值,再根据以及,即可得,进而求得.【详解】设,由可得,由可知,或,,由图可知,,即,.因为,所以,即,.所以,所以或,又因为,所以,.故答案为:.【点睛】本题主要考查根据图象求出以及函数的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.15.(1);(2).【分析】(1)令圆弧的半径为,由定义知求,进而由弧田面积,即可求其面积;(2)由题意得,扇形面积,利用基本不等式求其最大值,确定最大值时的值即可.【详解】(1)由题意,如下图示,令圆弧的半径为,,∴,即,得,∴弧田面积,而,∴.(2)由题意知:弧长为,即该扇形周长,而扇形面积,∴当且仅当时等号成立.∴当时,该扇形面积最大.【点睛】关键点点睛:(1)根据“矢”的定义,结合扇形中弦、半径、圆心角的关系求其半径,进而由面积关系求弧田面积即可;(2)由扇形周长、面积公式列出扇形面积关于圆心角的函数,应用基本不等式求最值并确定等号成立的条件.16.(1)(2);.【分析】(1)由三角函数的诱导公式化简得出;(2)由三角函数的诱导公式化简再计算得出.【详解】(1)(2)因为,所以,所以;.17.(1)(2)单调递增区间为;对称轴方程为(3)最大值是,最小值是﹣1【分析】(1)展开利用辅助角公式化简即可求最小正周期(2)根据复合函数整体法即可求单调递增区间和对称轴方程(3)根据复合函数整体法即可最大值和最小值【详解】(1)函数的最小正周期(2)令解得所以函数的单调递增区间为令,解得所以对称轴方程为(3)当时,所以所以函数在区间上的最大值是,最小值是18.(1)(2)(3)【分析】(1)通过三个连续零点的值可以求出函数的周期,根据最小正周期公式可以求出的值,将特殊点代入解析式中,可以求出,的值,进而确定函数解析式;(2)根据正弦型函数的图象变换特点可以求出的解析式,由 可求出,进而得到的值域;(3)根据可求出,由此求出,进而得到的值.【详解】(1)由图知,,则.由图可得,在处最大值,又因为图象经过,故,所以,故,又因为,所以,函数又经过,故,得.所以函数的表达式为.(2)由题意得,,因为,所以,则,所以,所以在区间上的值域为.(3)因为,所以,即,又因为,所以, 由,所以.所以,所以.19.(1);(2)证明见解析;(3).【分析】(1)根据新定义逐一判断即可;(2)根据新定义证明即可;(3)若为线周期函数,则存在非零常数,对任意,都有,可得,解得的值再检验即可.【详解】(1)对于,,所以不是线周期函数,对于,,所以不是线周期函数,对于,,所以是线周期函数;(2)若为线周期函数,其线周期为,则存在非零常数对任意,都有恒成立,因为,所以,所以为周期函数;(3)因为为线周期函数,则存在非零常数,对任意,都有,所以,令,得,令,得,所以,因为,所以,检验:当时,,存在非零常数,对任意,,所以为线周期函数,所以:.【点睛】关键点点睛:本题解题的关键点是对新定义的理解和应用,以及特殊值解决恒成立问题.

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map