开学活动
搜索
    上传资料 赚现金

    人教A版必修二8.6空间直线、平面的垂直课堂、课后练习题(含答案)

    人教A版必修二8.6空间直线、平面的垂直课堂、课后练习题(含答案)第1页
    人教A版必修二8.6空间直线、平面的垂直课堂、课后练习题(含答案)第2页
    人教A版必修二8.6空间直线、平面的垂直课堂、课后练习题(含答案)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课时训练

    展开

    这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课时训练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.已知l⊥平面α,直线m⊂平面β.有下面四个命题:
    ①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
    其中正确的两个命题是( )
    A.①② B.③④
    C.②④ D.①③
    2..如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥A­BCD中,下列结论正确的是( )
    A.平面ABD⊥平面ABC
    B.平面ADC⊥平面BDC
    C.平面ABC⊥平面BDC
    D.平面ADC⊥平面ABC
    二、填空题
    3.已知平面α,β和直线m,l,则下列说法:
    ①若α⊥β,α∩β=m,l⊥m,则l⊥β;
    ②若α∩β=m,l⊂α,l⊥m,则l⊥β;
    ③若α⊥β,l⊂α,则l⊥β;
    ④若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β.
    其中正确的说法序号为________.
    三、解答题
    4.如图,在四棱锥P­ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.
    (1)求证:PE⊥BC;
    (2)求证:平面PAB⊥平面PCD;
    8.6空间直线、平面的垂直 课堂练习答案
    1.D [∵l⊥α,α∥β,∴l⊥β,∵m⊂β,∴l⊥m,故①正确;∵l∥m,l⊥α,∴m⊥α,又∵m⊂β,∴α⊥β,故③正确.]
    2..D [∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,
    ∴BD⊥CD.
    又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,
    故CD⊥平面ABD,则CD⊥AB.
    又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.
    又AB⊂平面ABC,
    ∴平面ADC⊥平面ABC.]
    3.答案:④
    解析:说法①缺少了条件:l⊂α;说法②缺少了条件:α⊥β;
    说法③缺少了条件:α∩β=m,l⊥m;说法④具备了面面垂直的性质定理的所有条件
    4.[证明] (1)因为PA=PD,E为AD的中点,
    所以PE⊥AD.
    因为底面ABCD为矩形,
    所以BC∥AD.
    所以PE⊥BC.
    (2)因为底面ABCD为矩形,
    所以AB⊥AD.
    又因为平面PAD⊥平面ABCD,
    所以AB⊥平面PAD.
    所以AB⊥PD.
    又因为PA⊥PD,
    所以PD⊥平面PAB.
    因为PD⊂平面PCD,
    所以平面PAB⊥平面PCD.
    8.6空间直线、平面的垂直 课后练习
    一、选择题
    1.下列命题中错误的是 ( )
    A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
    B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
    C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
    D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
    2.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是( )
    A.若m⊥n,n∥α,则m1⊥α
    B.若m∥β,β⊥α,则m⊥α
    C.若m⊥β,n⊥β,n⊥α,则m⊥α
    D.若m⊥n,n⊥β,β⊥α,则m⊥α
    3.已知直线l,m与平面α,β,l⊂α,m⊂β,则下列命题中正确的是( )
    A.若l∥m,则必有α∥β
    B.若l⊥m,则必有α⊥β
    C.若l⊥β,则必有α⊥β
    D.若α⊥β,则必有m⊥α
    4.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )
    A.α⊥β且m⊂α B.α⊥β且m∥α
    C.m∥n且n⊥β D.m⊥n且n∥β
    二、填空题
    5.平面α⊥平面β,a⊂α,b⊂β,且b∥α,a⊥b,则a和β的位置关系是________.
    6..不同直线m、n和不同平面α、β.给出下列命题:
    ①eq \b\lc\ \rc\}(\a\vs4\al\c1(α∥β,m⊂α))⇒m∥β; ②eq \b\lc\ \rc\}(\a\vs4\al\c1(m∥n,m∥β))⇒n∥β;
    ③eq \b\lc\ \rc\}(\a\vs4\al\c1(m⊂α,n⊂β))⇒m,n异面; ④eq \b\lc\ \rc\}(\a\vs4\al\c1(α⊥β,m∥α))⇒m⊥β.
    其中假命题的个数为________.
    7.如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面.
    其中结论正确的是________(填序号).
    三、解答题
    8.如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.
    (1)若G为AD边的中点,求证:BG⊥平面PAD;
    (2)求证:AD⊥PB.
    9.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=4eq \r(5).设M是PC上的一点,
    求证:平面MBD⊥平面PAD;
    10*.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,
    求证:(1)DE=DA;
    (2)平面BDM⊥平面ECA;
    (3)平面DEA⊥平面ECA.

    8.6空间直线、平面的垂直 课后练习答案
    1.D 对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.
    2.C [A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;
    B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;
    C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;
    D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.]
    3.答案 C
    解析 对于选项A,平面α和平面β还有可能相交,所以选项A错误;
    对于选项B,平面α和平面β还有可能相交或平行,所以选项B错误;
    对于选项C,因为l⊂α,l⊥β,所以α⊥β.所以选项C正确;
    对于选项D,直线m可能和平面α不垂直,所以选项D错误.
    4.C [对A,设α∩β=a,m⊂α,当m⊥a时,才有m⊥β,故A错误;对B,当α⊥β,且m∥α时,可能有m与β平行,故B错误;对C,由线面垂直的判定可知正确;对D,当m⊥n且n∥β时,可能有m∥β,故D错误.]
    5..a⊥β
    6. 3
    解析 命题①正确,面面平行的性质;命题②不正确,也可能n⊂β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.
    解析 若存在1条,则α⊥β,与已知矛盾.
    7.①②③
    8.证明
    (1)连结PG,由题知△PAD为正三角形,G是AD的中点,
    ∴PG⊥AD.
    又平面PAD⊥平面ABCD,
    ∴PG⊥平面ABCD,
    ∴PG⊥BG.
    又∵四边形ABCD是菱形且∠DAB=60°,
    ∴BG⊥AD.
    又AD∩PG=G,∴BG⊥平面PAD.
    (2)由(1)可知BG⊥AD,PG⊥AD.
    所以AD⊥平面PBG,所以AD⊥PB.
    9.(1)证明 在△ABD中,
    ∵AD=4,BD=8,AB=4eq \r(5),
    ∴AD2+BD2=AB2.∴AD⊥BD.
    又∵面PAD⊥面ABCD,
    面PAD∩面ABCD=AD,BD⊂面ABCD,
    ∴BD⊥面PAD,又BD⊂面BDM,
    ∴面MBD⊥面PAD.
    10.*[证明] (1)设BD=a,如图,作DF∥BC交CE于F,
    则CF=DB=a.因为CE⊥平面ABC,所以BC⊥CF,DF⊥EC,所以DE=eq \r(EF2+DF2)=eq \r(5)a.
    又因为DB⊥平面ABC,所以DA=eq \r(DB2+AB2)=eq \r(5)a,
    所以DE=DA.
    (2)取CA的中点N,连接MN,BN,则MN綊eq \f(1,2)CE綊DB.
    所以四边形MNBD为平行四边形,所以MD∥BN.
    又因为EC⊥平面ABC,所以EC⊥BN,EC⊥MD.
    又DE=DA,M为EA的中点,所以DM⊥AE.
    所以DM⊥平面AEC,所以平面BDM⊥平面ECA.
    (3)由(2)知DM⊥平面AEC,而DM⊂平面DEA,
    所以平面DEA⊥平面ECA.

    相关试卷

    人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课后复习题:

    这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直课后复习题,共27页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直练习题:

    这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直练习题,共7页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    8.6 空间直线、平面的垂直:

    这是一份8.6 空间直线、平面的垂直,文件包含8.63平面与平面垂直doc、1第1课时直线与直线垂直直线与平面垂直的定义及判定doc、2第2课时直线与平面所成的角直线与平面垂直的性质定理doc、18.63应用案巩固提升doc、1第1课时应用案巩固提升doc、2第2课时应用案巩固提升doc等6份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map