广东省梅州市2023-2024学年高二下学期7月期末考试数学试卷(含答案)
展开一、选择题
1.已知集合,,则( )
A.B.C.D.
2.已知命题,,则为( )
A.,B.,
C.,D.,
3.若,则“”是“”的( )条件
A.充分不必要B.必要不充分C.既不充分也不必要D.充分必要
4.小明参加学校篮球协会的面试,通过面试的条件是:首先在三分线外投篮,两次机会,命中一次即通过面试;若均未命中,则接着在罚球点处投篮,一次机会,若命中,也可通过面试.已知小明三分线外投篮命中的概率为,在罚球点处投篮命中的概率为,且每次投篮是相互独立的,则其通过面试的概率为( )
A.B.C.D.
5.展开式中的常数项为( )
A.6B.18C.D.
6.( )
A.B.4C.D.2
7.若制作一个容积为32的无盖正四棱柱容器(不考虑材料的厚度),要使所用材料最省,其底面边长为( )()
A.2B.C.D.4
8.已知甲、乙两袋中装有大小相同、材质均匀的球,各袋中每个球被取出的概率相等.甲袋中有2个红球和4个蓝球,乙袋中有4个红球和4个蓝球,现从两袋中各取一个球,恰好一红一蓝,则其中红球来自与甲袋的概率为( )
A.B.C.D.
二、多项选择题
9.某地生产的甲、乙两类水果的质量X,Y(单位:kg)分别服从正态分布,,它们的正态分布的密度曲线如图所示,则下列说法中正确的是( )
A.B.
C.D.
10.某中学为了调查学生热爱阅读是否与学生的性别有关,从1200名女生和1500名男生中通过分层抽样的方式随机抽取180名学生进行问卷调查,将调查的结果得到等高堆积条形图如图所示,则
附:.
A.可以估计该校学生中热爱阅读的女生人数比男生多
B.用样本的频率估计总体概率,从该校学生中任选1人,其热爱阅读的概率为0.65
C.根据小概率值的独立性检验,可以认为学生是否热爱阅读与性别有关
D.根据小概率值的独立性检验,可以认为学生是否热爱阅读与性别无关
11.已知函数,当且仅当,取得最小值,则下列说法正确的有( )
A.的最大值为37
B.的最小值为
C.在处导数等于0
D.当x和y取遍所有实数时,则所能达到的最小值为4
三、填空题
12.已知离散型随机变量的分布列如下表,则均值________.
13.写出在处的切线方程为的一个二次函数________.
四、双空题
14.摆线,又称旋轮线、圆滚线,是最速降线问题的解.在数学中,摆线的定义为:一个圆沿一条直线滚动时,圆边界上一定点所形成的轨迹.已知一个半径为2的圆,沿着x轴转动,角速度为1,如图,为描述圆边界上从原点出发的点所形成的轨迹,写出其横坐标关于旋转时间的函数表达式________;其纵坐标关于旋转时间t的函数表达式________.
五、解答题
15.已知函数,的图象关于直线对称,且相邻两个零点的距离为.
(1)求ω和φ的值;
(2)若,,求的值.
(3)若,使得关于x的不等式成立,求实数m的取值范围.
16.某网上购物平台为了提高某商品的的销售业绩,对该商品近5个月的月销售单价x(单位:元)与月销量y(单位:个)之间的数据进行了统计,得到如下表数据:
(1)根据以往经验,y与x具有线性相关关系,求y关于x的线性回归方程;
(2)若该商品的成本为140元/个,根据(1)中回归方程,求该商品月利润最大时的单价为多少元.(结果精确到1元)
参考公式:,.参考数据:,.
17.已知函数,.
(1)当时,求函数的极值;
(2)函数在区间上为单调函数,求a的取值范围.
18.如图,李明从家里出发到公司有两条主干道,在主干道Ⅰ有,两个易堵点,处出现堵车的概率为,且当出现堵车时,出现堵车的概率为;当不堵车时,出现堵车的概率为;主干道Ⅱ有,,三个易堵点,它们出现堵车的事件相互独立,且概率都是.
(1)若李明从家里出发到公司选择了主干道Ⅱ行驶,求其恰遇到一次堵车的概率;
(2)若李明选择了主干道Ⅰ行驶,求其遇到堵车的概率;
(3)已知李明从家里出发到公司,如遇堵车,主干道Ⅰ中每个易堵点平均拥堵为4分钟,主干道Ⅱ的每个易堵点需平均拥堵为3分钟.若按照“平均拥堵时间短的路线是较优出行路线”的标准,则李明从家里出发到公司走哪一条路线较好?
19.设集合,且P中至少有两个元素,若集合Q满足以下三个条件:
①,且Q中至少有两个元素;
②对于任意,当,都有;
③对于任意,若,则;
则称集合Q为集合P的“耦合集”.
(1)若集合,求集合的“耦合集”;
(2)集合,,,且,若集合存在“耦合集”.
(i)求证:对于任意,有;
(ii)求集合的“耦合集”的元素个数.
参考答案
1.答案:B
解析:因为,则,
所以.
故选:B.
2.答案:D
解析:由题意可知:为,.
故选:D.
3.答案:C
解析:由,得不出,
所以“”是“”的不充分条件,
又,得不出,
所以“”是“”的不必要条件,
所以“”是“”的既不充分也不必要条件.
故选:C.
4.答案:C
解析:记其通过面试为事件A,
若其未通过面试,则在三分线外投篮没有命中,且在罚球点处投篮也没有命中,则,所以.
故选:C.
5.答案:A
解析:由题意可知:展开式中的常数项为.
故选:A.
6.答案:B
解析:由题意可得:
,
即.
故选:B.
7.答案:A
解析:设容积为32的无盖正四棱柱容器底面边长x,则高为,
则容器的表面积为,
则,令,得,
当,,单调递减,
当,,单调递增,
所以当,取最小值,所以最小值为,
所以底面边长为,所用材料最省.
故选:A.
8.答案:B
解析:记“两袋中各取一个球,恰好一红一蓝”为事件A,
“从两袋中各取一个球,红球来自与甲袋”为事件B,
则,,
所以.
故选:B.
9.答案:AD
解析:对于A,根据正态曲线可知甲类水果的平均质量乙类水果的平均质量,,A正确;
对于B,根据正态曲线可知,甲类水果的质量比乙类水果的质量更集中于平均值左右,所以,B错误;
对于C,D,根据正态曲线图像可知,所以,C错误,D正确;
故选:AD.
10.答案:AC
解析:由题意可知:抽取的女生人数为,抽取的男生人数为,
对于女生:热爱阅读的人数为,不热爱阅读的人数为;
对于男生:热爱阅读的人数为,不热爱阅读的人数为;
对于选项A:因为,所以可以估计该校学生中热爱阅读的女生人数比男生多,故A正确;
对于选项B:其热爱阅读的频率为,
用样本的频率估计总体概率,从该校学生中任选1人,其热爱阅读的概率为0.63,故B错误;
对于选项CD:根据题意可得列联表
零假设:学生是否热爱阅读与性别无关,
则,
根据根据小概率值的独立性检验,可知零假设不成立,
所以可以认为学生是否热爱阅读与性别有关,故C正确,D错误;
故选:AC.
11.答案:BC
解析:对于A:,
当时,最大值为49,故A错误;
对于B:,
当且仅当时取等号,故B正确;
对于C:因为函数,当且仅当,取得最小值,所以在处导数等于0,故C正确;
对于D:设,所以点的轨迹为直线,
令,则的轨迹方程为,
又表示点M与N的距离的平方,
又,
,故D错误.
故选:BC.
12.答案:0.3/
解析:由题意可得:,解得.
故答案为:0.3.
13.答案:(满足均可).
解析:设二次函数,则,
由题意可得:,例如取,则.
故答案为:(满足均可).
14.答案:;
解析:设标记点为A,圆心为C,作,,,如图所示:
旋转时间,则,,则,,
可得,,
所以,.
故答案为:;.
15.答案:(1),
(2)
(3)实数m的取值范围为
解析:(1)因为相邻两个零点的距离为,所以周期为,所以,所以,
所以,函数的图象关于直线对称,
所以,所以,,
所以,,又,所以;
(2)所认,,所以,
所以,因为,所以,
又,所以,
所以,
;
(3)因为,又,
则有,所以,
由,使得关于x的不等式成立,
所以,实数m的取值范围为.
16.答案:(1);
(2)196
解析:(1)由表中数据求得:,,
则,
故y关于x的回归直线方程为.
(2)设每月的总利润,
因为抛物线的对称轴方程为,
所以该拖把月利润最大时,该商品的单价为196元.
17.答案:(1)函数有极小值,无极大值
(2)
解析:(1)若,则,
可知的定义域为,且,
令,解得;令,解得;
可知在内单调递减,在内单调递增,
所以函数有极小值,无极大值.
(2)因为,且,
若函数在区间上为单调函数,则有:
当函数在区间上为单调递增函数,则,可得,
原题意等价于对任意恒成立,
可知在区间上为单调递增函数,
当时,取到最小值1,可得;
当函数在区间上为单调递减函数,则,可得,
原题意等价于对任意恒成立,
可知在区间上为单调递增函数,
当时,取到最大值6,可得;
综上所述:或,
所以a的取值范围为.
18.答案:(1);
(2);
(3)选择了主干道Ⅱ行驶较好
解析:(1)若李明选择了主干道Ⅱ行驶,设堵车次数为X,
由题意可知:,
所以其恰遇到一次堵车的概率.
(2)若李明选择了主干道Ⅰ行驶,设,堵车的事件分别为,,
可知,,,
则,,,
可得,,
,,
所以其遇到堵车的概率.
(3)若李明选择了主干道Ⅱ行驶,由(1)可知:,
所以平均拥堵时间为分钟;
若李明选择了主干道Ⅰ行驶,记堵车次数为Y,
由(2)可得:
,,,
则,
所以平均拥堵时间为分钟;
因为,所以选择了主干道Ⅱ行驶较好.
19.答案:(1)或或;
(2)(i)证明见详解;(ii)5
解析:(1)由已知条件②得:的可能元素为:6,8,10;
检验可知均满足条件③,所以,
检验可知:或也符合题意,
所以或或.
(2)(ⅰ)因为,,
由已知条件②得的可能元素为:,,,,,,
由条件③可知,且,
可得,
同理可得,,,,,
所以对于任意,有;
(ⅱ)因为,由(ⅰ)可知:,
则,即,
同理可得:,,则,,
又因为的可能元素为:,,,,,,
即,
假设还存在其他元素p,
因为,可知,,
由集合性质可知:或,
则或,
即或,假设不成立,
所以不存在其他元素p,所以共5个元素.
a
0.050
0.010
0.001
3.841
6.635
10.828
1
0
P
0.5
0.3
q
单价x/元
180
190
200
210
220
月销量y/个
57
52
42
32
27
性别
热爱阅读
合计
是
否
女生
64
16
80
男生
50
50
100
合计
114
66
180
广东省梅州市2023-2024学年高二下学期7月期末考试数学试题(含答案): 这是一份广东省梅州市2023-2024学年高二下学期7月期末考试数学试题(含答案),文件包含广东省梅州市2023-2024学年高二下学期7月期末考试数学试题docx、广东省梅州市2023-2024学年高二下学期7月期末考试数学答案pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
广东省梅州市2023-2024学年高二下学期7月期末考试数学试卷(PDF版附答案): 这是一份广东省梅州市2023-2024学年高二下学期7月期末考试数学试卷(PDF版附答案),共11页。
广东省梅州市2023-2024学年高二下学期7月期末考试数学试题: 这是一份广东省梅州市2023-2024学年高二下学期7月期末考试数学试题,共6页。