所属成套资源:新高考数学一轮复习讲义 (2份打包,原卷版+含解析)
新高考数学一轮复习讲义第2章 §2.4 函数的对称性(2份打包,原卷版+含解析)
展开
这是一份新高考数学一轮复习讲义第2章 §2.4 函数的对称性(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第2章§24函数的对称性原卷版doc、新高考数学一轮复习讲义第2章§24函数的对称性含解析doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.
2.会利用对称公式解决问题.
知识梳理
1.奇函数、偶函数的对称性
(1)奇函数关于原点对称,偶函数关于y轴对称.
(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为x=-2;若f(x-2)是奇函数,则函数f(x)图象的对称中心为(-2,0).
2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);
若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点(a,0)对称.
3.两个函数图象的对称
(1)函数y=f(x)与y=f(-x)关于y轴对称;
(2)函数y=f(x)与y=-f(x)关于x轴对称;
(3)函数y=f(x)与y=-f(-x)关于原点对称.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数y=f(x+1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.( √ )
(2)函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(1,0)对称.( × )
(3)若函数f(x)满足f(x-1)+f(x+1) =0,则f(x)的图象关于y轴对称.( × )
(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.( √ )
教材改编题
1.函数f(x)=eq \f(x+1,x)图象的对称中心为( )
A.(0,0) B.(0,1)
C.(1,0) D.(1,1)
答案 B
解析 因为f(x)=eq \f(x+1,x)=1+eq \f(1,x),由y=eq \f(1,x)向上平移一个单位长度得到y=1+eq \f(1,x),又y=eq \f(1,x)关于(0,0)对称,所以f(x)=1+eq \f(1,x)的图象关于(0,1)对称.
2.已知定义在R上的函数f(x)在[-2,+∞)上单调递减,且f(-2-x)=f(-2+x),则f(-4)与f(1)的大小关系为________.
答案 f(-4)>f(1)
解析 ∵f(-2-x)=f(-2+x),∴f(x)关于直线x=-2对称,又f(x)在[-2,+∞)上单调递减,∴f(-4)=f(0)>f(1),故f(-4)>f(1).
3.偶函数y=f(x)的图象关于直线x=2对称,且当x∈[2,3]时,f(x)=2x-1,则f(-1)=________.
答案 5
解析 ∵f(x)为偶函数,∴f(-1)=f(1),由f(x)的图象关于x=2对称,可得f(1)=f(3)=2×3-1=5.
题型一 轴对称问题
例1 (1)已知定义在R上的函数f(x)是奇函数,对x∈R都有f(x+1)=f(1-x),当f(-3)=-2时,则f(2 023)等于( )
A.-2 B.2 C.0 D.-4
答案 B
解析 定义在R上的函数f(x)是奇函数,且对x∈R都有f(x+1)=f(1-x),故函数f(x)的图象关于直线x=1对称,∴f(x)=f(2-x),故f(-x)=f(2+x)=-f(x),∴f(x)=-f(2+x)=f(4+x),
∴f(x)是周期为4的周期函数.则f(2 023)=f(505×4+3)=f(3)=-f(-3)=2.
(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞)上单调递减,则不等式f(x-1)>f(1)的解集为________.
答案 (2,4)
解析 ∵f(x+2)是偶函数,∴f(x+2)的图象关于直线x=0对称,∴f(x)的图象关于直线x=2对称,又f(x)在[2,+∞)上单调递减,∴f(x)在(-∞,2]上单调递增.又f(x-1)>f(1),
∴|x-1-2|
相关试卷
这是一份2025年高考数学一轮复习(基础版)课时精讲第2章 §2.4 二次函数与幂函数(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第2章§24二次函数与幂函数原卷版doc、2025年高考数学一轮复习基础版课时精讲第2章§24二次函数与幂函数含解析doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习讲练测第2章§2.4函数的对称性(含解析),共10页。
这是一份第2.4练 函数的对称性(原卷版)-2024年高考数学一轮复习精讲精练宝典(新高考专用),共5页。试卷主要包含了4练 函数的对称性等内容,欢迎下载使用。