





新高考数学一轮复习讲义第8章 §8.5 椭 圆(2份打包,原卷版+含解析)
展开知识梳理
1.椭圆的定义
把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
2.椭圆的简单几何性质
常用结论
椭圆的焦点三角形
椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.
(1)当P为短轴端点时,θ最大, SKIPIF 1 < 0 最大.
(2) SKIPIF 1 < 0 =eq \f(1,2)|PF1||PF2|sin θ=b2tan eq \f(θ,2)=c|y0|.
(3)|PF1|max=a+c,|PF1|min=a-c.
(4)|PF1|·|PF2|≤eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(|PF1|+|PF2|,2)))2=a2.
(5)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cs θ.
(6)焦点三角形的周长为2(a+c).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )
(2)椭圆是轴对称图形,也是中心对称图形.( )
(3)eq \f(y2,m2)+eq \f(x2,n2)=1(m≠n)表示焦点在y轴上的椭圆.( )
(4)椭圆的离心率e越大,椭圆就越圆.( )
教材改编题
1.椭圆eq \f(x2,16)+eq \f(y2,25)=1上点P到上焦点的距离为4,则点P到下焦点的距离为( )
A.6 B.3 C.4 D.2
2.已知椭圆C:eq \f(x2,a2)+eq \f(y2,4)=1的一个焦点为(2,0),则C的离心率为( )
A.eq \f(1,3) B.eq \f(1,2) C.eq \f(\r(2),2) D.eq \f(2\r(2),3)
3.若椭圆C:eq \f(x2,4)+eq \f(y2,3)=1,则该椭圆上的点到焦点距离的最大值为( )
A.3 B.2+eq \r(3)
C.2 D.eq \r(3)+1
题型一 椭圆的定义及其应用
例1 (1)(2022·丽江模拟)一动圆P与圆A:(x+1)2+y2=1外切,而与圆B:(x-1)2+y2=64内切,那么动圆的圆心P的轨迹是( )
A.椭圆 B.双曲线
C.抛物线 D.双曲线的一支
(2)设点P为椭圆C:eq \f(x2,a2)+eq \f(y2,4)=1(a>2)上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为________.
延伸探究 若将本例(2)中“∠F1PF2=60°”改成“PF1⊥PF2”,求△PF1F2的面积.
思维升华 椭圆定义的应用技巧
(1)椭圆定义的应用主要有:求椭圆的标准方程、求焦点三角形的周长、面积及求弦长、最值和离心率等.
(2)通常将定义和余弦定理结合使用求解关于焦点三角形的周长和面积问题.
跟踪训练1 (1)已知△ABC的周长为12,B(0,-2),C(0,2),则顶点A的轨迹方程为( )
A.eq \f(x2,12)+eq \f(y2,16)=1(x≠0) B.eq \f(x2,12)+eq \f(y2,16)=1(y≠0) C.eq \f(x2,16)+eq \f(y2,12)=1(x≠0) D.eq \f(x2,16)+eq \f(y2,12)=1(y≠0)
(2)若F为椭圆C:eq \f(x2,25)+eq \f(y2,16)=1的右焦点,A,B为C上两动点,则△ABF周长的最大值为( )
A.4 B.8 C.10 D.20
题型二 椭圆的标准方程
命题点1 定义法
例2 已知椭圆的两个焦点分别为F1(0,2), F2(0,-2),P为椭圆上任意一点,若|F1F2|是|PF1|,|PF2|的等差中项,则此椭圆的标准方程为( )
A.eq \f(x2,64)+eq \f(y2,60)=1 B.eq \f(y2,64)+eq \f(x2,60)=1
C.eq \f(x2,16)+eq \f(y2,12)=1 D.eq \f(y2,16)+eq \f(x2,12)=1
命题点2 待定系数法
例3 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(eq \r(6),1),P2(-eq \r(3),-eq \r(2)),则该椭圆的方程为________.
思维升华 根据条件求椭圆方程的主要方法
(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.
(2)待定系数法:根据题目所给的条件确定椭圆中的a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1(m>0,n>0,m≠n),不必考虑焦点位置,用待定系数法求出m,n的值即可.
跟踪训练2 (1)“1
C.充要条件 D.既不充分也不必要条件
(2)已知过椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左焦点F1(-1,0)的直线与椭圆交于不同的两点A,B,与y轴交于点C,点C,F1是线段AB的三等分点,则该椭圆的标准方程是( )
A.eq \f(x2,6)+eq \f(y2,5)=1 B.eq \f(x2,5)+eq \f(y2,4)=1
C.eq \f(x2,3)+eq \f(y2,2)=1 D.eq \f(x2,4)+eq \f(y2,3)=1
题型三 椭圆的几何性质
命题点1 离心率
例4 (1)设F1,F2是椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点,过点F1且斜率为eq \f(\r(3),3)的直线交椭圆于点P,若2∠PF1F2=∠PF2F1,则椭圆E的离心率为( )
A.eq \r(3)+1 B.eq \r(3)-1
C.eq \f(\r(3),3) D.eq \f(\r(2),2)
(2)椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为eq \f(1,4),则C的离心率为( )
A.eq \f(\r(3),2) B.eq \f(\r(2),2) C.eq \f(1,2) D.eq \f(1,3)
思维升华 求椭圆离心率或其范围的方法
(1)直接求出a,c,利用离心率公式e=eq \f(c,a)求解.
(2)由a与b的关系求离心率,利用变形公式e=eq \r(1-\f(b2,a2))求解.
(3)构造a,c的方程.可以不求出a,c的具体值,而是得出a与c的关系,从而求得e.
命题点2 与椭圆有关的范围(最值)问题
例5 (1)已知F1,F2为椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点,椭圆的离心率为eq \f(1,2),M为椭圆上一动点,则∠F1MF2的最大值为( )
A.eq \f(π,3) B.eq \f(π,2) C.eq \f(2π,3) D.eq \f(3π,4)
(2)如图,焦点在x轴上的椭圆eq \f(x2,4)+eq \f(y2,b2)=1(b>0)的离心率e=eq \f(1,2),F,A分别是椭圆的左焦点和右顶点,P是椭圆上任意一点,则eq \(PF,\s\up6(→))·eq \(PA,\s\up6(→))的最大值为________.
思维升华 与椭圆有关的最值或范围问题的求解方法
(1)利用数形结合、几何意义,尤其是椭圆的性质.
(2)利用函数,尤其是二次函数.
(3)利用不等式,尤其是基本不等式.
跟踪训练3 (1)已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,射线AF1 交椭圆E于点B,以AB为直径的圆过F2,则椭圆E的离心率是( )
A.eq \f(\r(2),2) B.eq \f(\r(3),3) C.eq \f(1,2) D.eq \f(\r(5),5)
(2)已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F(c,0),上顶点为A(0,b),直线x=eq \f(a2,c)上存在一点P满足(eq \(FP,\s\up6(→))+eq \(FA,\s\up6(→)))·eq \(AP,\s\up6(→))=0,则椭圆的离心率的取值范围为( )
A.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(1,2),1)) B.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(\r(2),2),1))
C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(\r(5)-1,2),1)) D.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(2),2)))
课时精练
1.已知椭圆eq \f(x2,4)+eq \f(y2,3)=1的两个焦点为F1,F2,过F2的直线交椭圆于M,N两点,则△F1MN的周长为( )
A.2 B.4 C.6 D.8
2.已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(1,3),A1,A2分别为C的左、右顶点,B为C的上顶点.若eq \(BA1,\s\up6(—→))·eq \(BA2,\s\up6(—→))=-1,则C的方程为( )
A.eq \f(x2,18)+eq \f(y2,16)=1 B.eq \f(x2,9)+eq \f(y2,8)=1
C.eq \f(x2,3)+eq \f(y2,2)=1 D.eq \f(x2,2)+y2=1
3.已知F1,F2是椭圆C的两个焦点,P是C上一点,且∠F1PF2=30°,|PF1|=eq \r(3)|PF2|,则椭圆C的离心率为( )
A.eq \f(\r(3)-1,4) B.eq \f(\r(3)-1,2) C.eq \f(\r(3)+1,4) D.eq \f(\r(3)+1,3)
4.已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,直线y=kx(k>0)与C交于M,N两点(其中M在第一象限),若M,F1,N,F2四点共圆,则C的离心率e的取值范围是( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),1)) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2),1))
C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(\r(3)-1,2),1)) D.eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(\r(2),2)))
5.(多选)如图所示,用一个与圆柱底面成θeq \b\lc\(\rc\)(\a\vs4\al\c1(0<θ<\f(π,2)))角的平面截圆柱,截面是一个椭圆.若圆柱的底面圆半径为2,θ=eq \f(π,3),则下列结论正确的是( )
A.椭圆的长轴长等于4
B.椭圆的离心率为eq \f(\r(2),2)
C.椭圆的标准方程可以是eq \f(y2,16)+eq \f(x2,4)=1
D.椭圆上的点到一个焦点的距离的最小值为4-2eq \r(3)
6.(多选)椭圆C:eq \f(x2,4)+y2=1的左、右焦点分别为F1,F2,O为坐标原点,以下四个命题中正确的是( )
A.若过点F2的直线与椭圆C交于A,B两点,则△ABF1的周长为8
B.椭圆C上存在点P,使得eq \(PF1,\s\up6(—→))·eq \(PF2,\s\up6(—→))=0
C.椭圆C的离心率为eq \f(1,2)
D.若P为椭圆eq \f(x2,4)+y2=1上一点,Q为圆x2+y2=1上一点,则点P,Q的最大距离为3
7.已知B(-eq \r(3),0)是圆A:(x-eq \r(3))2+y2=16内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为________________.
8.已知椭圆C的一个焦点为F(0,1),椭圆C上的点到F的距离的最小值为1,则椭圆C的标准方程为____________;若P为椭圆C上一动点,M(3,3),则|PM|-|PF|的最小值为________.
9.已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),焦点F1(-c,0),F2(c,0),左顶点为A,点E的坐标为(0,c),A到直线EF2的距离为eq \f(\r(6),2)b.
(1)求椭圆C的离心率;
(2)若P为椭圆C上的一点,∠F1PF2=60°,△PF1F2的面积为eq \r(3),求椭圆C的标准方程.
10.已知F1,F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆的离心率的取值范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
11.(多选)(2023·长沙模拟)人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒定律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,下列结论正确的是( )
A.卫星向径的取值范围是[a-c,a+c]
B.卫星运行速度在近地点时最小,在远地点时最大
C.卫星向径的最小值与最大值的比值越大,椭圆轨道越圆
D.卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间
12.已知椭圆eq \f(x2,9)+eq \f(y2,5)=1的左、右焦点分别为F1,F2,点P在椭圆上,设线段PF1的中点为M,且|OF2|=|OM|,则△PF1F2的面积为________.
13.(多选已知椭圆C:eq \f(x2,4)+eq \f(y2,3)=1的左、右焦点分别是F1,F2,Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3),y0))为椭圆C上一点,则下列结论正确的是( )
A.△MF1F2的周长为6
B.△MF1F2的面积为eq \f(\r(15),2)
C.△MF1F2的内切圆的半径为eq \f(\r(15),9)
D.△MF1F2的外接圆的直径为eq \f(32,11)
14. 甲、乙两名探险家在某山中探险,他们来到一个山洞,洞内是一个椭球形,截面是一个椭圆,甲、乙两人分别站在洞内如图所示的A,B两点处,甲站在A处唱歌时,乙在与A处有一定距离的B处听得很清晰,原因在于甲、乙两人所站的位置恰好是洞内截面椭圆的两个焦点,符合椭圆的光学性质,即从一个焦点发出光经椭圆反射后经过另一个焦点.现已知椭圆C:eq \f(x2,100)+eq \f(y2,36)=1上一点M,过点M作切线l,A,B分别为椭圆C的左、右焦点,cs∠AMB=-eq \f(1,4),由光的反射性质:光的入射角等于反射角,则椭圆中心O到切线l的距离为________.
焦点的位置
焦点在x轴上
焦点在y轴上
图形
标准方程
eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)
eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)
范围
-a≤x≤a且-b≤y≤b
-b≤x≤b且-a≤y≤a
顶点
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
轴长
短轴长为2b,长轴长为2a
焦点
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
焦距
|F1F2|=2c
对称性
对称轴:x轴和y轴,对称中心:原点
离心率
e=eq \f(c,a)(0
a2=b2+c2
2025年高考数学一轮复习(基础版)课时精讲第8章 §8.5 椭 圆(2份打包,原卷版+含解析): 这是一份2025年高考数学一轮复习(基础版)课时精讲第8章 §8.5 椭 圆(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第8章§85椭圆原卷版doc、2025年高考数学一轮复习基础版课时精讲第8章§85椭圆含解析doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
2024高考数学一轮复习讲义(步步高版)第八章 §8.5 椭 圆: 这是一份2024高考数学一轮复习讲义(步步高版)第八章 §8.5 椭 圆,共21页。
新高考数学一轮复习讲义8.5《直线、平面垂直的判定与性质》(2份打包,解析版+原卷版): 这是一份新高考数学一轮复习讲义8.5《直线、平面垂直的判定与性质》(2份打包,解析版+原卷版),文件包含新高考数学一轮复习讲义85《直线平面垂直的判定与性质》含详解doc、新高考数学一轮复习讲义85《直线平面垂直的判定与性质》原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。