所属成套资源:新高考数学一轮复习讲义 (2份打包,原卷版+含解析)
新高考数学一轮复习讲义第10章 §10.1 两个计数原理(2份打包,原卷版+含解析)
展开
这是一份新高考数学一轮复习讲义第10章 §10.1 两个计数原理(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第10章§101两个计数原理原卷版doc、新高考数学一轮复习讲义第10章§101两个计数原理含解析doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
考试要求 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.
知识梳理
两个计数原理
(1)分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.
(2)分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
常用结论
1.分类加法计数原理的推广:完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n类方案中有mn种不同的方法,那么完成这件事共有N= m1+m2+…+mn种不同的方法.
2.分步乘法计数原理的推广:完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)在分类加法计数原理中,某两类不同方案中的方法可以相同.( )
(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )
(3)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.( )
(4)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )
教材改编题
1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为( )
A.16 B.13 C.12 D.10
2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有( )
A.8种 B.9种 C.10种 D.11种
3.由于用具简单、趣味性强,象棋成为流行极为广泛的棋艺活动.某棋局的一部分如图所示,若不考虑这部分以外棋子的影响,且“马”和“炮”不动,“兵”只能往前走或左右走,每次只能走一格,从“兵”吃掉“马”的最短路线中随机选择一条路线,其中也能把“炮”吃掉的可能路线有( )
A.10条 B.8条 C.6条 D.4条
题型一 分类加法计数原理
例1 (1)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有( )
A.4种 B.10种 C.18种 D.20种
(2)如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.
思维升华 使用分类加法计数原理的两个注意点
(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.
(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.
跟踪训练1 (1)现有拾圆、贰拾圆、伍拾圆的人民币各一张,一共可以组成的币值有( )
A.3种 B.6种 C.7种 D.8种
(2)设I={1,2,3,4},A与B是I的子集,若A∩B={1,2},则称(A,B)为一个“理想配集”.若将(A,B)与(B,A)看成不同的“理想配集”,则符合此条件的“理想配集”有________个.
题型二 分步乘法计数原理
例2 (1)数独是源自18世纪瑞士的一种数学游戏.如图是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有1,2,3这三个数字,则不同的填法有( )
A.12种 B.24种 C.72种 D.216种
(2)(多选)现安排高二年级A,B,C三名同学到甲、乙、丙、丁四个工厂进行社会实践,每名同学只能选择一个工厂,且允许多人选择同一个工厂,则下列说法正确的是( )
A.共有43种不同的安排方法
B.若甲工厂必须有同学去,则不同的安排方法有37种
C.若A同学必须去甲工厂,则不同的安排方法有12种
D.若三名同学所选工厂各不相同,则不同的安排方法有24种
思维升华 利用分步乘法计数原理解题的策略
(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.
(2)将这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成.
跟踪训练2 (1)教学大楼共有五层,每层均有两个楼梯,则由一层到五层不同的走法有( )
A.10种 B.25种 C.52种 D.24种
(2)(多选)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
A.每位同学限报其中一个社团,则不同的报名方法共有34种
B.每位同学限报其中一个社团,则不同的报名方法共有43种
C.每个社团限报一个人,则不同的报名方法共有24种
D.每个社团限报一个人,则不同的报名方法共有43种
题型三 两个计数原理的综合应用
例3 (1)有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( )
A.14 B.23 C.48 D.120
(2)甲与其他四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为________.
思维升华 利用两个计数原理解题时的三个注意点
(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事.
(2)分类时,标准要明确,做到不重不漏,有时要恰当画出示意图或树状图.
(3)对于复杂问题,一般是先分类再分步.
跟踪训练3 (1)有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为( )
A.24 B.14 C.10 D.9
(2)如图,a省分别与b,c,d,e四省交界,且b,c,d互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有5种不同颜色可供选用,则不同的涂色方案种数为( )
A.480 B.600
C.720 D.840
课时精练
1.小黑点表示网络的结点,结点之间的连线表示它们有网络相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现在从结点A向结点B传递信息,信息可分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )
A.9 B.21 C.12 D.8
2.某省新高考采用“3+1+2”模式:“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在物理、历史科目中选择1个科目;“2”为再选科目,考生可在思想政治、地理、化学、生物4个科目中选择2个科目.已知小明同学必选化学,那么他可选择的方案共有( )
A.4种 B.6种 C.8种 D.12种
3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )
A.3 B.4 C.6 D.8
4.中国古代将物质属性分为“金、木、土、水、火”五种,其相互关系是“金克木,木克土,土克水,水克火,火克金”.将五种不同属性的物质任意排成一列,则属性相克的两种物质不相邻的排法种数为( )
A.8 B.10 C.15 D.20
5.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,三位同学按甲、乙、丙的顺序依次选一个作为礼物,如果让三位同学选取的礼物都满意,那么不同的选法有( )
A.360种 B.50种
C.60种 D.90种
6.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数为( )
A.12 B.24 C.36 D.48
7.用0,1,2,3,4,5,6这7个数字可以组成无重复数字的四位偶数的个数为( )
A.180 B.240 C.420 D. 480
8.(多选)现有4个数学课外兴趣小组,第一、二、三、四组分别有7人、8人、9人、10人,则下列说法正确的是( )
A.选1人为负责人的选法种数为34
B.每组选1名组长的选法种数为5 400
C.若推选2人发言,这2人需来自不同的小组,则不同的选法种数为420
D.若另有3名学生加入这4个小组,加入的小组可自由选择,且第一组必须有人选,则不同的选法有37种
9.如图所示,在由连接正八边形的三个顶点构成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).
10.算筹是一根根同样长短和粗细的小棍子,是中国古代用来记数、列式和进行各种数与式演算的一种工具,是中国古代的一项伟大、重要的发明.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如表所示:
用算筹计数法表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,知“”表示的三位数为________;如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示能被5整除的三位数的个数为________.
11.如图是在“赵爽弦图”的基础上创作出的一个“数学风车”平面模型,图中正方形ABCD内部为“赵爽弦图”(由四个全等的直角三角形和一个小正方形组成),△ABE,△BCF,△CDG,△DAH这4个三角形和“赵爽弦图”ABCD涂色,且相邻区域(即图中有公共点的区域)不同色,已知有4种不同的颜色可供选择.则不同的涂色方法种数是( )
A.48 B.54
C.72 D.108
12.世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16支队伍按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为________.
13.几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E,则这九根树枝从高到低不同的顺序共有( )
A.23 种 B.24 种 C.32 种 D.33 种
14.若m,n均为非负整数,在做m+n的加法时,各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序数对,m+n为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是________.
数字
方式
1
2
3
4
5
6
7
8
9
纵式
横式
相关试卷
这是一份(新高考)高考数学一轮复习学案+巩固提升练习10.1《两个计数原理》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》原卷版doc、新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》教师版doc、新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》教师版pdf等4份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习学案+分层提升10.1《两个计数原理》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》原卷版doc、新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》教师版doc、新高考高考数学一轮复习讲义+巩固练习101《两个计数原理》教师版pdf等4份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习讲练测第10章§10.1两个计数原理(含解析),共12页。试卷主要包含了1 两个计数原理等内容,欢迎下载使用。