所属成套资源:新高考数学一轮复习讲义 (2份打包,原卷版+含解析)
新高考数学一轮复习讲义第10章 §10.5 事件的相互独立性与条件概率、全概率公式(2份打包,原卷版+含解析)
展开
这是一份新高考数学一轮复习讲义第10章 §10.5 事件的相互独立性与条件概率、全概率公式(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第10章§105事件的相互独立性与条件概率全概率公式原卷版doc、新高考数学一轮复习讲义第10章§105事件的相互独立性与条件概率全概率公式含解析doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
知识梳理
1.相互独立事件
(1)概念:对任意两个事件A与B,如果P(AB)=P(A)·P(B)成立,则称事件A与事件B相互独立,简称为独立.
(2)性质:若事件A与B相互独立,那么A与eq \x\t(B),eq \x\t(A)与B,eq \x\t(A)与eq \x\t(B)也都相互独立.
2.条件概率
(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=eq \f(PAB,PA)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.
(2)两个公式
①利用古典概型:P(B|A)=eq \f(nAB,nA);
②概率的乘法公式:P(AB)=P(A)P(B|A).
3.全概率公式
一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=eq \i\su(i=1,n,P)(Ai)P(B|Ai).
常用结论
1.如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An).
2.贝叶斯公式:设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(Ai|B)=eq \f(PAiPB|Ai,PB)=eq \f(PAiPB|Ai,\i\su(k=1,n,P)AkPB|Ak),i=1,2,…,n.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( )
(2)若事件A,B相互独立,则P(B|A)=P(B).( )
(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A,“第2枚正面朝上”为事件B,则A,B相互独立.( √ )
(4)若事件A1与A2是对立事件,则对任意的事件B⊆Ω,都有P(B)=P(A1)P(B|A1)+P(A2)P(B|A2).
( )
教材改编题
1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为eq \f(1,2),eq \f(2,3),则谜题没被破解出的概率为( )
A.eq \f(1,6) B.eq \f(1,3) C.eq \f(5,6) D.1
2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( )
A.eq \f(1,28) B.eq \f(1,10) C.eq \f(1,9) D.eq \f(2,7)
3.智能化的社区食堂悄然出现,某社区有智能食堂A,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A食堂,那么第二天去A食堂的概率为0.6;如果第一天去B食堂,那么第二天去A食堂的概率为0.5,则居民甲第二天去A食堂用餐的概率为________.
题型一 相互独立事件的概率
例1 (1)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立 B.甲与丁相互独立
C.乙与丙相互独立 D.丙与丁相互独立
(2)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为 ________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 ________.
思维升华 求相互独立事件同时发生的概率的方法
(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.
(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.
跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列火车正点到达的概率;
(2)这三列火车恰好有一列火车正点到达的概率;
(3)这三列火车至少有一列火车正点到达的概率.
题型二 条件概率
例2 (1)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为( )
A.eq \f(3,5) B.eq \f(2,5) C.eq \f(2,7) D.eq \f(1,5)
(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为( )
A.eq \f(7,8) B.eq \f(5,6) C.eq \f(3,4) D.eq \f(20,21)
思维升华 求条件概率的常用方法
(1)定义法:P(B|A)=eq \f(PAB,PA).
(2)样本点法:P(B|A)=eq \f(nAB,nA).
(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.
跟踪训练2 (1)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为( )
A.eq \f(1,4) B.eq \f(2,5) C.eq \f(1,2) D.eq \f(3,5)
(2)某射击运动员每次击中目标的概率为eq \f(4,5),现连续射击两次.
①已知第一次击中,则第二次击中的概率是________;
②在仅击中一次的条件下,第二次击中的概率是________.
题型三 全概率公式的应用
例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为( )
A.eq \f(79,160) B.eq \f(3,5) C.eq \f(21,32) D.eq \f(5,8)
(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为( )
A.0.48 B.0.49 C.0.52 D.0.51
思维升华 利用全概率公式解题的思路
(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件Ai(i=1,2,…,n).
(2)求P(Ai)和所求事件B在各个互斥事件Ai发生条件下的概率P(Ai)P(B|Ai).
(3)代入全概率公式计算.
跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为( )
A.0.78 B.0.8 C.0.82 D.0.84
(2)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=________,P(B)=________.
课时精练
1.若P(AB)=eq \f(1,9),P(eq \x\t(A))=eq \f(2,3),P(B)=eq \f(1,3),则事件A与B的关系是( )
A.事件A与B互斥
B.事件A与B对立
C.事件A与B相互独立
D.事件A与B既互斥又相互独立
2.某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是( )
A.0.819 2 B.0.972 8
C.0.974 4 D.0.998 4
3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为( )
A.0.8 B.0.625 C.0.5 D.0.1
4.甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为( )
A.0.36 B.0.352
C.0.288 D.0.648
5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为( )
A.0.625 B.0.75 C.0.5 D.0.25
6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则( )
A.事件A与B相互独立
B.事件A与C相互独立
C.P(B|A)=eq \f(5,12)
D.P(C|A)=eq \f(5,12)
7.某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得-20分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是eq \f(2,3),回答第三个问题正确的概率是eq \f(1,2),且各题回答正确与否相互之间没有影响,则该选手仅回答正确两个问题的概率是 ________;该选手闯关成功的概率是 ________.
8.某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.
9.某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P1=eq \f(1,10),P2=eq \f(1,9),P3=eq \f(1,8).
(1)求该款芯片生产在进入第四道工序前的次品率;
(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.
10.男子冰球比赛上演的是速度与激情的碰撞.2022北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛.比赛规则:12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段:
小组赛阶段各组采用单循环赛制(小组内任意两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组比赛成绩进行排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中相遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛.
(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛?
(2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲、乙、丙、丁队)实力相当,假设他们在接下来的四分之一决赛、半决赛、铜牌赛、金牌赛中取胜的概率都依次为eq \f(3,4),eq \f(1,2),eq \f(1,2),eq \f(1,2),且每支球队晋级后每场比赛相互独立.试求甲、乙、丙、丁队都没获得冠军的概率.
11.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如图所示,其中编号为i的方框表示第i场比赛,方框中是进行该场比赛的两名棋手,第i场比赛的胜者称为“胜者i”,负者称为“负者i”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为eq \f(2,3),而乙、丙、丁之间相互比赛,每人胜负的可能性相同.则甲获得冠军的概率为( )
A.eq \f(8,27) B.eq \f(16,27) C.eq \f(32,81) D.eq \f(40,81)
12.(多选)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是( )
A.P(B)=eq \f(2,5)
B.P(B|A1)=eq \f(5,11)
C.事件B与事件A1相互独立
D.A1,A2,A3是两两互斥的事件
13.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关
B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大
D.该棋手在第二盘与丙比赛,p最大
14.根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,
P(eq \x\t(A)|eq \x\t(C))=0.95,现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即P(C)=0.005,则P(C|A)=________.(精确到0.001)
相关试卷
这是一份2025年高考数学一轮复习(基础版)课时精讲第10章 §10.4 事件的相互独立性与条件概率、全概率公式(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第10章§104事件的相互独立性与条件概率全概率公式原卷版doc、2025年高考数学一轮复习基础版课时精讲第10章§104事件的相互独立性与条件概率全概率公式含解析doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份第90讲 事件的相互独立性、条件概率与全概率公式 2025年高考数学一轮复习讲义(新高考专用),共9页。
这是一份高考数学一轮复习考点微专题(新高考地区专用)考向40事件的相互独立性、条件概率与全概率公式(原卷版+解析),共66页。