数学八年级上册-第11章三角形试题
展开
这是一份数学八年级上册-第11章三角形试题,共12页。
第十一章三角形单元检测一.选择题(共12小题)1.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是( )A.4 B.5 C.6 D.92.已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为( )A.2a+2b﹣2c B.2a+2b C.2c D.03.下列四个图形中,线段BE是△ABC的高的是( )A. B. C. D.4.如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=( )A.145° B.150° C.155° D.160°5.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)6.如图,在△ABC中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC=( )A.102° B.112° C.115° D.118°7.一个多边形的内角和是外角和的2倍,则这个多边形是( )A.四边形 B.五边形 C.六边形 D.八边形8.已知一个多边形的内角和是900°,则这个多边形是( )A.五边形 B.六边形 C.七边形 D.八边形9.若一个正多边形的一个外角是45°,则这个正多边形的边数是( )A.10 B.9 C.8 D.610.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为( )A.36° B.42° C.45° D.48°11.两本书按如图所示方式叠放在一起,则图中相等的角是( )A.∠1与∠2 B.∠2与∠3 C.∠1与∠3 D.三个角都相等12.7条长度均为整数厘米的线段:a1,a2,a3,a4,a5,a6,a7,满足a1<a2<a3<a4<a5<a6<a7,且这7条线段中的任意3条都不能构成三角形.若a1=1厘米,a7=21厘米,则a6能取的值是( )A.18厘米 B.13厘米 C.8厘米 D.5厘米二.填空题(共8小题)13.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是 .14.在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为 .15.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.16.一副三角板,如图所示叠放在一起,则图中∠α的度数是 .17.如图,△ABC中,点D在BA的延长线上,DE∥BC,如果∠BAC=65°,∠C=30°,那么∠BDE的度数是 .18.若一个正多边形的一个外角是40°,则这个正多边形的边数是 .19.如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为 .20.已知三角形的两边长分别是3cm和7cm,第三边长是偶数,则这个三角形的周长为 .三.解答题(共6小题)21.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围; (2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.23.如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.24.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数; (2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.25.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 度;(2)求∠EDF的度数.26.请你参与下面探究过程,完成所提出的问题.(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70°,则∠BPC= 度;(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A的数量关系?并说明理由.(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D=α.①直接写出∠BPC与α的数量关系;②根据α的值的情况,判断△BPC的形状(按角分类).参考答案一.选择题(共12小题)1.C【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.2.D【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.3.C【解答】解:A、B、D中线段BE不符合三角形高线的定义.故选C.4.B【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x°,∠B=2x°,∠C=3x°,∴6x=180,∴x=30,∵∠BAD=∠B+∠C=5x=150°,故选B.5.B【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.6.D【解答】解:∵在△ABC中,∠BAC=56°,∠ABC=74°,∴∠ACB=180°﹣∠BAC﹣∠ABC=50°,∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=37°,∠PCB=25°,∴△BCP中,∠P=180°﹣∠PBC﹣∠PCB=118°,故选:D.7.C【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.8.C【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.9.C【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选C.10.D【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.11.B【解答】解:在直角△DEF与直角△FMP中,∠E=∠M=90°,∠5=∠MFP,∴∠4=∠FPM,∴∠2=∠3;同理易证∠ANB=∠CAE,而∠CAE与∠4不一定相等.因而∠1与∠3不一定相等.故图中相等的角是∠2与∠3.故选B.12.B【解答】解:若a1=1厘米,则后边的一个一定大于或等于前边的两个的和,则一定有:a2=2,a3=3,a4=5,a5=8,a6=13,a7=21,故选B.二.填空题(共8小题)13.【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故应填:三角形的稳定性.14.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.15.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.16.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°17.【解答】解:∵∠BAC=65°,∠C=30°,∴△ABC中,∠B=85°,∵DE∥BC,∴∠BDE=180°﹣∠B=180°﹣85°=95°,故答案为:95°.18.【解答】解:多边形的每个外角相等,且其和为360°,据此可得 =40,解得n=9.故答案为9.19.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°20.【解答】解:设第三边长为xcm.则有7﹣3<x<7+3,即4<x<10.又第三边是偶数,因此x=6或8.故周长为3+7+6=16(cm)或3+7+8=18(cm).三.解答题(共6小题)21.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.22.【解答】解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.23.【解答】(1)解:∵AD∥BC,∠A=70°,∴∠ABC=180°﹣∠A=110°,∵BE平分∠ABC,∴∠ABE=∠ABC=55°;(2)证明:DF∥BE.∵AB∥CD,∴∠A+∠ADC=180°,∠2=∠AFD,∵AD∥BC,∴∠A+∠ABC=180°,∴∠ADC=∠ABC,∵∠1=∠2=∠ADC,∠ABE=∠ABC∴∠2=∠ABE,∴∠AFD=∠ABE,∴DF∥BE.24.【解答】解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°;(2)∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B=90°﹣70°=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(3)能.∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=×40°=20°.25.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.26.【解答】解:(1)∵∠A=70°,∴∠ABC+∠ACB=110°,∵BP、CP是角平分线,∴∠ABC=2∠PBC,∠ACB=2∠BCP,∴∠PBC+∠BCP=55°,∵∠PBC+∠BCP+∠BPC=180°,∴∠BPC=125°,故答案为:125;(2)∵BP,CP分别是外角∠DBC,∠ECB的平分线,∴∠PBC+∠PCB=(∠DBC+∠ECB)=(180°﹣∠A),在△PBC中,∠P=180°﹣(180°﹣∠A)=90°﹣∠A.(3)如图3,①延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q=180°+180°﹣2∠P=360°﹣2∠P,∴∠P=180°﹣;②当0<α<180时,△BPC是钝角三角形,当α=180时,△BPC是直角三角形,当α>180时,△BPC是鋭角三角形.