所属成套资源:2025年高考数学一轮总复习(新高考考点与真题训练)
第39讲 空间几何体及其表面积、体积--2025高考一轮单元综合复习与测试卷
展开
这是一份第39讲 空间几何体及其表面积、体积--2025高考一轮单元综合复习与测试卷,文件包含第39讲空间几何体及其表面积体积原卷版docx、第39讲空间几何体及其表面积体积解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
1.空间几何体的结构特征
(1)多面体的结构特征
(2)旋转体的结构特征
2.直观图
(1)画法:常用斜二测画法.
(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.
②原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
3.圆柱、圆锥、圆台的侧面展开图及侧面积公式
4.柱、锥、台、球的表面积和体积
考点1 基本立体图形
[名师点睛]
空间几何体结构特征的判断技巧
(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.
(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.
直观图
(1)在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”
(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=eq \f(\r(2),4)S原图形.
[典例]
1.(多选)(2022·潍坊调研)下面关于空间几何体的叙述正确的是( )
A.底面是正多边形的棱锥是正棱锥
B.用平面截圆柱得到的截面只能是圆和矩形
C.长方体是直平行六面体
D.存在每个面都是直角三角形的四面体
2.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( )
A.eq \f(\r(2),4)a2 B.2eq \r(2)a2 C.eq \f(\r(2),2)a2 D.eq \f(2\r(2),3)a2
3.(2021·新高考Ⅰ卷)已知圆锥的底面半径为eq \r(2),其侧面展开图为一个半圆,则该圆锥的母线长为( )
A.2B.2eq \r(2)
C.4D.4eq \r(2)
[举一反三]
1.下列说法正确的是( )
A.有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥
B.有两个面平行且相似,其余各面都是梯形的多面体是棱台
C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥
D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体
2.(2022·浙江·镇海中学模拟预测)如图,梯形是水平放置的一个平面图形的直观图,其中,,,则原图形的面积为( )
A.B.C.D.
3.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4eq \r(3) m,则圆锥底面圆的半径等于______ m.
考点2 表面积与体积
[名师点睛]
1.空间几何体表面积的求法
(1)旋转体的表面积问题注意其轴截面及侧面展开图的应用,并弄清底面半径、母线长与对应侧面展开图中边的关系.
(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
2.求空间几何体的体积的常用方法
(1)公式法:规则几何体的体积问题,直接利用公式进行求解;
(2)割补法:把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体;
(3)等体积法:通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积.
[典例]
1.(多选)已知正四棱锥的侧面与底面所成的锐二面角为θ,若θ=30°,侧棱长为eq \r(21),则( )
A.正四棱锥的底面边长为6
B.正四棱锥的底面边长为3
C.正四棱锥的侧面积为24eq \r(3)
D.正四棱锥的侧面积为12eq \r(3)
2.(2021·全国甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.
3.(2021·新高考Ⅱ卷)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )
A.20+12eq \r(3) B.28eq \r(2)
C.eq \f(56,3) D.eq \f(28\r(2),3)
4.(2020·新高考全国Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为________.
5.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为________.
[举一反三]
1.(2022·重庆八中模拟预测)以边长为2的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )
A.8πB.4πC.8D.4
2.(2022·河北保定·一模)圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )
A.1∶1B.1∶2C.2∶1D.2∶3
3.(2022·江苏·沭阳如东中学模拟预测)若圆锥的母线长为,侧面展开图的面积为,则该圆锥的体积是( )
A.B.C.D.
4.(2022·广东佛山·二模)如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面和圆锥的顶点均在体积为36π的球面上,若圆柱的高为2,则圆锥的侧面积为( )
A.2πB.4πC.16πD.
5.(2022·河北衡水中学一模)已如A,B,C是表面积为的球O的球面上的三个点,且,,则三棱锥的体积为( )
A.B.C.D.
6.(2022·福建福州·模拟预测)如图,一个正六棱柱的茶叶盒,底面边长为,高为,则这个茶叶盒的表面积约为______.(精确到0.1,)
7.(2022·广东·华南师大附中模拟预测)在四面体中,为等边三角形,边长为6,,,,则四面体的体积为______.
考点3 与球有关的切接问题
[名师点睛]
(1)求解多面体的外接球时,经常用到截面图.如图所示,设球O的半径为R,截面圆O′的半径为r,M为截面圆上任意一点,球心O到截面圆O′的距离为d,则在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.
(2)求解球的内接正方体、长方体等问题的关键是把握球的直径即是几何体的体对角线.
[典例]
1.(2022·湖南·长郡中学模拟预测)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )
A.B.C.D.
2.(2022·天津·南开中学模拟预测)棱长为的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些球的最大半径为( )
A.B.C.D.
3.(2022·湖北十堰·三模)在四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=3,AB=4,则四棱锥外接球与内切球的表面积之比为( )
A.B.10C.D.11
[举一反三]
1.(2022·天津和平·一模)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖脐.如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,,若鳖牖的体积为l,则阳马的外接球的表面积等于( ).
A.B.C.D.
2.(2022·天津·二模)已知在中,角所对的边分别为,且又点都在球的球面上,且点到平面的距离为,则球的体积为( )
A.B.C.D.
3.(2022·广东·大埔县虎山中学模拟预测)设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为
A.B.C.D.
4.(2022·湖北·宜昌市夷陵中学模拟预测)已知正四面体ABCD的表面积为,且A,B,C,D四点都在球O的球面上,则球O的体积为______.
5.(2022·辽宁·鞍山一中模拟预测)已知对棱相等的四面体被称为“等腰四面体”,它的四个面是全等的锐角三角形.在等腰四面体中,,,则该四面体的内切球表面积为___________.
6.(2022·山东省实验中学模拟预测)在四面体ABCD中,是边长为2的等边三角形,是以为斜边的等腰直角三角形,平面平面BC,则四面体ABCD的外接球的表面积为__________.
名称
棱柱
棱锥
棱台
图形
底面
互相平行且全等
多边形
互相平行且相似
侧棱
平行且相等
相交于一点,但不一定相等
延长线交于一点
侧面形状
平行四边形
三角形
梯形
名称
圆柱
圆锥
圆台
球
图形
母线
互相平行且相等,垂直于底面
相交于一点
延长线交于一点
轴截面
矩形
等腰三角形
等腰梯形
圆面
侧面展开图
矩形
扇形
扇环
圆柱
圆锥
圆台
侧面展开
图
侧面积公
式
S圆柱侧=2πrl
S圆锥侧=πrl
S圆台侧=π(r1+r2)l
名称
几何体
表面积
体积
柱体(棱柱和圆柱)
S表面积=S侧+2S底
V=Sh
锥体(棱锥和圆锥)
S表面积=S侧+S底
V=eq \f(1,3)Sh
台体(棱台和圆台)
S表面积=S侧+S上+S下
V=eq \f(1,3)(S上+S下+eq \r(S上S下))h
球
S=4πR2
V=eq \f(4,3)πR3
相关试卷
这是一份高考数学一轮复习考点探究与题型突破第39讲空间几何体及其表面积、体积(原卷版+解析),共24页。试卷主要包含了空间几何体的结构特征,直观图,柱、锥、台、球的表面积和体积,1,)等内容,欢迎下载使用。
这是一份2025版高考数学一轮总复习知识梳理训练题第7章立体几何第1讲空间几何体的结构及其表面积和体积,共5页。试卷主要包含了柱体、锥体、台体体积间的关系等内容,欢迎下载使用。
这是一份2025版高考数学一轮总复习素养提升训练题第7章立体几何第1讲空间几何体的结构及其表面积和体积,共3页。试卷主要包含了6 km等内容,欢迎下载使用。