所属成套资源:2025年高考数学一轮总复习(新高考考点与真题训练)
第47讲 两直线的位置关系--2025高考一轮单元综合复习与测试卷
展开
这是一份第47讲 两直线的位置关系--2025高考一轮单元综合复习与测试卷,文件包含第47讲两直线的位置关系原卷版docx、第47讲两直线的位置关系解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
1.两条直线平行与垂直的判定
(1)两条直线平行
对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.
(2)两条直线垂直
如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.
2.直线的交点与直线的方程组成的方程组的解的关系
(1)两直线的交点
点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解,解这个方程组就可以得到这两条直线的交点坐标.
(2)两直线的位置关系
3.距离公式
(1)两点间的距离公式
平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=eq \r((x2-x1)2+(y2-y1)2).
特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=eq \r(x2+y2).
(2)点到直线的距离公式
平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=eq \f(|Ax0+By0+C|,\r(A2+B2)).
(3)两条平行线间的距离公式
一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=eq \f(|C1-C2|,\r(A2+B2)).
4.对称问题
(1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0).
(2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有eq \b\lc\{(\a\vs4\al\c1(\f(y′-y0,x′-x0)·k=-1,,\f(y′+y0,2)=k·\f(x′+x0,2)+b,))可求出x′,y′.
考点1 两条直线的平行与垂直
[名师点睛]
1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.
2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.
[典例]
1.(2022·杭州模拟)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),则“ea=eq \f(1,e)”是“l1∥l2”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.(2022·长春模拟)已知直线l经过点(1,-1),且与直线2x-y-5=0垂直,则直线l的方程为( )
A.2x+y-1=0 B.x-2y-3=0
C.x+2y+1=0 D.2x-y-3=0
3.(2022·荆门模拟)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC的顶点A(2,0),B(1,2),且AC=BC,则△ABC的欧拉线的方程为( )
A.x-2y-4=0 B.2x+y-4=0
C.4x+2y+1=0 D.2x-4y+1=0
[举一反三]
1.已知m,n∈R,则“直线x+my-1=0与nx+y+1=0平行”是“mn=1”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
2.(2021·烟台期末)若直线l1:(k-3)x+(k+4)y+1=0与l2:(k+1)x+2(k-3)y+3=0垂直,则实数k的值是( )
A.3或-3 B.3或4
C.-3或-1 D.-1或4
3.经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线方程为________.
4.(多选)已知直线l1:x+my-1=0,l2:(m-2)x+3y+3=0,则下列说法正确的是( )
A.若l1∥l2,则m=-1或m=3
B.若l1∥l2,则m=3
C.若l1⊥l2,则m=-eq \f(1,2)
D.若l1⊥l2,则m=eq \f(1,2)
考点2 两直线的交点与距离问题
[名师点睛]
(1)求过两直线交点的直线方程的方法:先求出两直线的交点坐标,再结合其他条件写出直线方程.
(2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.
[典例]
1.已知直线y=kx+2k+1与直线y=-eq \f(1,2)x+2的交点位于第一象限,则实数k的取值范围是________.
2.(2022·湖州调研)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是________.
3.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为eq \f(2\r(13),13),则c的值是________.
[举一反三]
1.两条平行直线2x-y+3=0和ax+3y-4=0间的距离为d,则a,d的值分别为( )
A.a=6,d=eq \f(\r(6),3) B.a=-6,d=eq \f(\r(5),3)
C.a=6,d=eq \f(\r(5),3) D.a=-6,d=eq \f(\r(6),3)
2.已知直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________________.
3.(多选)(2022·济南调研)已知直线l1:2x+3y-1=0和l2:4x+6y-9=0,若直线l到直线l1的距离与到直线l2的距离之比为1∶2,则直线l的方程为( )
A.2x+3y-8=0 B.4x+6y+5=0
C.6x+9y-10=0 D.12x+18y-13=0
考点3 对称问题
[名师点睛]
(1)光的反射问题实质是点关于直线的对称问题,要注意转化.
(2)直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.
(3)求直线l1关于直线l对称的直线l2,有两种处理方法:
①在直线l1上取两点(一般取特殊点),利用求点关于直线的对称点的方法求出这两点关于直线l的对称点,再用两点式写出直线l2的方程.
②设点P(x,y)是直线l2上任意一点,其关于直线l的对称点为P1(x1,y1)(P1在直线l1上),根据点关于直线对称建立方程组,用x,y表示出x1,y1,再代入直线l1的方程,即得直线l2的方程.
[典例]
1.过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________________.
2.已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________.
3.直线2x-y+3=0关于直线x-y+2=0对称的直线方程是________________.
[举一反三]
1.直线2x-4y-1=0关于x+y=0对称的直线方程为( )
A.4x-2y-1=0 B.4x-2y+1=0
C.4x+2y+1=0 D.4x+2y-1=0
2.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点.光线从点P出发,经BC,CA反射后又回到点P(如图所示).若光线QR经过△ABC的重心,则AP的长度为( )
A.2 B.1 C.eq \f(8,3) D.eq \f(4,3)
3.已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A的对称直线l′的方程.
方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解
一组
无数组
无解
直线l1与l2的公共点的个数
一个
无数个
零个
直线l1与l2的位置关系
相交
重合
平行
相关试卷
这是一份第40讲 空间点、直线、平面之间的位置关系--2025高考一轮单元综合复习与测试卷,文件包含第40讲空间点直线平面之间的位置关系原卷版docx、第40讲空间点直线平面之间的位置关系解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份第03讲 相等关系与不等关系--2025高考一轮单元综合复习与测试卷,文件包含第03讲相等关系与不等关系原卷版docx、第03讲相等关系与不等关系解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份第49讲 直线与圆、圆与圆的位置关系--2025高考一轮单元综合复习与测试卷,文件包含第49讲直线与圆圆与圆的位置关系原卷版docx、第49讲直线与圆圆与圆的位置关系解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。