山东省烟台市牟平区(五四制)2023-2024学年六年级下学期期中考试数学试卷(含解析)
展开说明:解答全部在答题卡上完成,最后只交答题卡.
一、选择题:(本题共12个小题,每小题3分,满分36分.每小题都给出标号A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案用2B铅笔在答题卡上涂黑.)
1. 的值为( )
A. 0B. 1C. -1D.
答案:B
解析:
详解:解:由题意知,,
故选:B.
2. 如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )
A. 垂线段最短
B. 两点确定一条直线
C. 过一点有且只有一条直线与已知直线垂直
D. 过直线外一点有且只有一条直线与已知直线平行
答案:A
解析:
详解:解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,
故选:A.
3. 若,下列计算正确的是( )
A. B.
C. D.
答案:A
解析:
详解:解:A.,故选项正确,符合题意;
B.,故选项错误,不符合题意;
C.,故选项错误,不符合题意;
D.,故选项错误,不符合题意.
故选:A.
4. 芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )
A. B. C. D.
答案:A
解析:
详解:解:,
故选A.
5. 若某多边形从一个顶点一共可引出4条对角线,则这个多边形是( )
A. 六边形B. 七边形C. 八边形D. 九边形
答案:B
解析:
详解:解:∵边形从一个顶点一共可引出条对角线,
∴,则这个多边形是七边形
故选:B
6. 若k为任意整数,则的值总能( )
A. 被2整除B. 被3整除C. 被5整除D. 被7整除
答案:B
解析:
详解:解:
,
能被3整除,
∴的值总能被3整除,
故选:B.
7. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西的方向,则淇淇家位于西柏坡的( )
A. 南偏西方向B. 南偏东方向
C. 北偏西方向D. 北偏东方向
答案:D
解析:
详解:解:如图:∵西柏坡位于淇淇家南偏西的方向,
∴淇淇家位于西柏坡的北偏东方向.
故选D.
8. 如图,,,则的大小为( )
A. B. C. D.
答案:C
解析:
详解:∵,,
∴,
∵,
∴.
故选:C.
9. 如图所示,已知线段,,(),求作线段AB,使.下面利用尺规作图正确的是( )
A. B.
C. D.
答案:D
解析:
详解:、错误,图中;
、错误,图中;
、错误,图中;
、正确,
故选:
10. 如图,直线被射线所截,,若,则的度数为( )
A. B. C. D.
答案:C
解析:
详解:解:如图,
由题意知,,
∵,
∴,
故选:C.
11. 在数学活动课上,小明同学将含角的直角三角板的一个顶点按如图方式放置在直尺上,测得,则的度数是( ).
A. B. C. D.
答案:B
解析:
详解:解:如图:
∵,
∴,
在中,,
∵,
故,
故选:B.
12. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+xn)的结果是( )
A. 1-xnB. 1+xn+1C. 1-xn+1D. 1+xn
答案:C
解析:
详解:解:(1-x)(1+x)=1-x2,
(1-x)(1+x+x2)=1-x3,
……
猜想(1-x)(1+x+x2+…+xn)=1-xn+1,
故选C
二.填空题(每题3分,共18分)
13. 上午8点30分时,钟表上时针与分针的夹角为____________.
答案:##度
解析:
详解:解:
,
∴上午8点30分时,钟表上时针与分针的夹角为,
故答案为:.
14. 用“”将从大到小排列是____________.
答案:
解析:
详解:解:由题意知,,
∵,
∴,
故答案为:.
15. 在直线上顺次取A、B、C三点,使,如果点O是线段的中点,是线段的中点,则线段的长为____________.
答案:##5厘米
解析:
详解:解:如图所示,
∵
∴
∵点O是线段的中点,
∴,
∵是线段BC的中点,
∴
∴.
故答案为:.
16. 若,则括号内应填的多项式是____________.
答案:
解析:
详解:解:由题意知,括号内应填多项式为:,
故答案为:.
17. 若,则的值是____________.
答案:
解析:
详解:解:由题意知,,
故答案为:.
18. 两个正方形如图摆放,若大正方形与小正方形的面积之差是64cm,则阴影部分的面积是___________.
答案:32
解析:
详解:设大,小正方形的边长分别为,则,
故答案为:32
三.解答题(满分66分)
19. 用乘法公式计算:
(1)
(2)
答案:(1)
(2)
解析:
小问1详解:
解:
;
小问2详解:
解:
.
20. (1)化简:
(2)先化简,再求值:,其中.
答案:(1);(2);1
解析:
详解:解:(1)原式
;
(2)
,
当时,原式.
21. 若中不含x的二次方项,求a的值.
答案:9
解析:
详解:解:
,
∵中不含x的二次方项,
∴,
解得.
22. 如图,已知线段,延长线段到点C,使,D是的中点.求:
(1)的长.
(2)的长.
答案:(1)24 (2)4
解析:
小问1详解:
解:∵,
∴,
∴;
小问2详解:
∵D是的中点,
∴,
∴.
23. 如图,是圆的一条半径,现从开始,沿逆时针方向画半径,,将这个圆分成3个面积比为的扇形,请计算这三个扇形圆心角的度数,并画出半径和.
答案:,,;画出半径见详解
解析:
详解:解:由题意得
因为面积比为,
所以三个圆心角的比为,
所以三个圆心角分别:
,
,
,
依次作出,,
画出半径和,如图,
24. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为.
(1)请用含a的式子分别表示;当时,求的值;
(2)比较与的大小,并说明理由.
答案:(1),,当时,
(2),理由见解析
解析:
小问1详解:
解:依题意得,三种矩形卡片的面积分别为:,
∴,,
∴,
∴当时,;
小问2详解:
,理由如下:
∵,
∴
∵,
∴,
∴.
25. 如图所示,已知O为上一点,与互补,射线OM,ON分别平分,若,试求:与的度数.
答案:与度数分别是和
解析:
详解:解:设等于x度,
平分,
OM平分,
.
与互补,
,
解得:,
与互补,
因此,与的度数分别是和.
26. 阅读下列材料,完成后面的任务.
完全平方公式的变形及其应用
我们知道,完全平方公式有: .
在解题过程中,根据题意,若将公式进行变形,则可以达到快速求解的目的,其变形主要有下列几种情形:
;
.
根据上述公式的变形,可以迅速地解决相关问题.
例如: 已知,,求 的值.
解: .
任务:
(1)已知,则 .
(2)已知,求的值.
答案:(1)4 (2)1
解析:
小问1详解:
解:,
,
,
,
故答案为:4;
小问2详解:
解:,
,
,
,
,
.
山东省烟台市招远市(五四制)2023-2024学年六年级下学期期中考试数学试卷(含解析): 这是一份山东省烟台市招远市(五四制)2023-2024学年六年级下学期期中考试数学试卷(含解析),共14页。试卷主要包含了 等于度, 水分子直径为 0, 若,则的值为等内容,欢迎下载使用。
山东省烟台市牟平区(五四制)2023-2024学年六年级下学期期中考试数学试题(原卷版+解析版): 这是一份山东省烟台市牟平区(五四制)2023-2024学年六年级下学期期中考试数学试题(原卷版+解析版),文件包含山东省烟台市牟平区五四制2023-2024学年六年级下学期期中考试数学试题原卷版docx、山东省烟台市牟平区五四制2023-2024学年六年级下学期期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
山东省烟台市牟平区2022-2023学年六年级下学期期末数学试题(解析版): 这是一份山东省烟台市牟平区2022-2023学年六年级下学期期末数学试题(解析版),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。