新高考数学一轮复习导学案第35讲 平面向量的基本定理与坐标运算(2份打包,原卷版+解析版)
展开1、平面向量的基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
2、平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
3、平面向量的坐标运算
(1)向量加法、减法、数乘运算及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq \r(xeq \\al(2,1)+yeq \\al(2,1)).
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则eq \(AB,\s\up6(→))=(x2-x1,y2-y1),|eq \(AB,\s\up6(→))|=eq \r((x2-x1)2+(y2-y1)2).
4、平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.
[常用结论与微点提醒]
1.平面内不共线向量都可以作为基底,反之亦然.
2.若a与b不共线,λa+μb=0,则λ=μ=0.
3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.
1、已知向量,则( )
A.2B.3C.4D.5
2、已知向量 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
A. SKIPIF 1 < 0 B.2
C.5 SKIPIF 1 < 0 D.50
3、在△ SKIPIF 1 < 0 中, SKIPIF 1 < 0 为 SKIPIF 1 < 0 边上的中线, SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,则 SKIPIF 1 < 0
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
4、已知向量 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 _________.
1、已知向量a=(m,2),b=(3,-6),若a=λb,则实数m的值是( )
A. -4 B. -1 C. 1 D. 4
2、 在△ABC中,BE是边AC上的中线,O是BE的中点,若 eq \(AB,\s\up6(→))=a, eq \(AC,\s\up6(→))=b,则 eq \(AO,\s\up6(→))等于( )
A. eq \f(1,2)a+ eq \f(1,2)b B. eq \f(1,2)a+ eq \f(1,3)b
C. eq \f(1,4)a+ eq \f(1,2)b D. eq \f(1,2)a+ eq \f(1,4)b
3、如图,向量e1,e2,a的起点与终点均在正方形网格的格点上,则向量a可用基底e1,e2表示为 .
4、已知点M是△ABC的边BC的中点,点E在边AC上,且eq \(EC,\s\up6(→))=2eq \(AE,\s\up6(→)),则向量eq \(EM,\s\up6(→))=________(用eq \(AB,\s\up6(→)),eq \(AC,\s\up6(→))表示).
考向一 平面向量基本定理的应用
例1、如图,在△ABC中,M是BC的中点,点N在AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM与BP∶PN的值.
变式1、在△OAB中,eq \(OC,\s\up6(→))=eq \f(1,4)eq \(OA,\s\up6(→)),eq \(OD,\s\up6(→))=eq \f(1,2)eq \(OB,\s\up6(→)),AD与BC交于点M,设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,以a,b为基底表示eq \(OM,\s\up6(→)).
变式2、如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上移动(不含端点),若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ___________, SKIPIF 1 < 0 的最小值为___________.
方法总结:
1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;
2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决;
3.既然eq \(OM,\s\up6(→))能用a,b表示,那我们不妨设出eq \(OM,\s\up6(→))=ma+nb;
4.利用向量共线建立方程,用方程的思想求解.
考向二 二平面向量的坐标运算
例2、已知点A(2,1),B(3,5),C(3,2), eq \(AP,\s\up6(→))= eq \(AB,\s\up6(→))+t eq \(AC,\s\up6(→)) (t∈R),若点P在第二象限,则实数t的取值范围是 .
变式1、 在平面直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2).
(1) 若 eq \(PA,\s\up6(→))+ eq \(PB,\s\up6(→))+ eq \(PC,\s\up6(→))=0,求 eq \(OP,\s\up6(→))的坐标;
(2) 若 eq \(OP,\s\up6(→))=m eq \(AB,\s\up6(→))+n eq \(AC,\s\up6(→)) (m,n∈R),且点P在函数y=x+1的图象上,求m-n的值.
变式2、已知A(-2,4),B(3,-1),C(-3,-4).设eq \(AB,\s\up6(→))=a,eq \(BC,\s\up6(→))=b,eq \(CA,\s\up6(→))=c,且eq \(CM,\s\up6(→))=3c,eq \(CN,\s\up6(→))=-2b,
(1)求3a+b-3c;
(2)求满足a=mb+nc的实数m,n;
(3)求M,N的坐标及向量eq \(MN,\s\up6(→))的坐标.
方法总结:求解向量坐标运算问题的一般思路
(1)向量问题坐标化
向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.
(2)巧借方程思想求坐标
向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.
(3)妙用待定系数法求系数
利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出系数.
考向三 用坐标表示解决共线问题
例3、平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).
(1)若(a+kc)∥(2b-a),求实数k;
(2)若d满足(d-c)∥(a+b),且|d-c|=eq \r(5),求d的坐标.
变式1、已知O为坐标原点,向量 eq \(OA,\s\up6(→))=(3,-4), eq \(OB,\s\up6(→))=(5,-3), eq \(OC,\s\up6(→))=(4-m,m+2).若点D(0, eq \f(3,2)m),求证:对任意实数m,都有 eq \(AB,\s\up6(→))∥ eq \(DC,\s\up6(→)).
变式2、(1)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.
(2)已知向量eq \(OA,\s\up7(―→))=(k,12),eq \(OB,\s\up7(―→))=(4,5),eq \(OC,\s\up7(―→))=(-k,10),且A,B,C三点共线,则k=________.
方法总结:1.两平面向量共线的充要条件有两种形式:(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;
(2)若a∥b(b≠0),则a=λb.
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
1、已知向量 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2、在 SKIPIF 1 < 0 的等腰直角 SKIPIF 1 < 0 中, SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3、(多选题)下列说法不正确的是( )
A.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的夹角为锐角,则 SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0
B.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 不共线,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 四点共面
C.对同一平面内给定的三个向量 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,一定存在唯一的一对实数 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 .
D. SKIPIF 1 < 0 中,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 一定是钝角三角形.
4、已知向量 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则m=______.
5、在平行四边形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 是线段 SKIPIF 1 < 0 的中点,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 _________.
新高考数学一轮复习讲义第5章 §5.2 平面向量基本定理及坐标表示(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第5章 §5.2 平面向量基本定理及坐标表示(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第5章§52平面向量基本定理及坐标表示原卷版doc、新高考数学一轮复习讲义第5章§52平面向量基本定理及坐标表示含解析doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
高考数学一轮复习【考点题型归纳讲练】导学案(新高考专用)第2课时平面向量的基本定理及坐标表示(原卷版+解析): 这是一份高考数学一轮复习【考点题型归纳讲练】导学案(新高考专用)第2课时平面向量的基本定理及坐标表示(原卷版+解析),共27页。
第35讲 平面向量的基本定理与坐标运算-备战2024年高考数学一轮复习精品导与练(新高考): 这是一份第35讲 平面向量的基本定理与坐标运算-备战2024年高考数学一轮复习精品导与练(新高考),文件包含第35讲平面向量的基本定理与坐标运算原卷版docx、第35讲平面向量的基本定理与坐标运算解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。