所属成套资源:新高考数学一轮复习导学案 (2份打包,原卷版+解析版)
新高考数学一轮复习导学案第02讲 常用逻辑用语(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习导学案第02讲 常用逻辑用语(2份打包,原卷版+解析版),文件包含新高考一轮复习导学案第02讲常用逻辑用语原卷版doc、新高考一轮复习导学案第02讲常用逻辑用语解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
1、 充分条件与必要条件
(1)充分条件、必要条件与充要条件的概念
(2)从集合的角度:
若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.
提示 若AB,则p是q的充分不必要条件;
若A⊇B,则p是q的必要条件;
若AB,则p是q的必要不充分条件;
若A=B,则p是q的充要条件;
若A⊈B且A⊉B,则p是q的既不充分也不必要条件.
2、全称量词与全称命题
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫作全称量词.
(2)全称命题:含有全称量词的命题.
(3)全称命题的符号表示:
形如“对M中的任意一个x,有p(x)成立”的命题,用符号简记为∀x∈M,p(x).
3、存在量词与特称命题
(1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在量词.
(2)特称命题:含有存在量词的命题.
(3)特称命题的符号表示:
形如“存在M中的元素x0,使p(x0)成立”的命题,用符号简记为∃x0∈M,p(x0).
1、【2022年浙江省高考】设 SKIPIF 1 < 0 ,则“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的( )
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
【答案】A
【解析】因为 SKIPIF 1 < 0 可得:
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,充分性成立;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,必要性不成立;
所以当 SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分不必要条件.
故选:A.
2、【2022年新高考北京高考】设 SKIPIF 1 < 0 是公差不为0的无穷等差数列,则“ SKIPIF 1 < 0 为递增数列”是“存在正整数 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 为不超过 SKIPIF 1 < 0 的最大整数.
若 SKIPIF 1 < 0 为单调递增数列,则 SKIPIF 1 < 0 ,
若 SKIPIF 1 < 0 ,则当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 ,取 SKIPIF 1 < 0 ,则当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
所以,“ SKIPIF 1 < 0 是递增数列” SKIPIF 1 < 0 “存在正整数 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ”;
若存在正整数 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,取 SKIPIF 1 < 0 且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
假设 SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,与题设矛盾,假设不成立,则 SKIPIF 1 < 0 ,即数列 SKIPIF 1 < 0 是递增数列.
所以,“ SKIPIF 1 < 0 是递增数列” SKIPIF 1 < 0 “存在正整数 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ”.
所以,“ SKIPIF 1 < 0 是递增数列”是“存在正整数 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ”的充分必要条件.
故选:C.
3、【2021年乙卷文科】已知命题 SKIPIF 1 < 0 ﹔命题 SKIPIF 1 < 0 ﹐ SKIPIF 1 < 0 ,则下列命题中为真命题的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【解析】由于 SKIPIF 1 < 0 ,所以命题 SKIPIF 1 < 0 为真命题;
由于 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上为增函数, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以命题 SKIPIF 1 < 0 为真命题;
所以 SKIPIF 1 < 0 为真命题, SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 为假命题.
故选:A.
1、命题“∀x≥0,tanx≥sinx”的否定为( )
A.x0≥0,tanx0<sinx0 B.x0<0,tanx0<sinx0
C.∀x≥0,tanx<sinx D.∀x<0,tanx<sinx
【答案】A
【解析】由题意可知,命题“∀x≥0,tanx≥sinx”的否定为“x≥0,tanx<sinx”,故选项A正确
2、【2022·广东省深圳市六校上学期第二次联考中学10月月考】
已知条件 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分又不必要条件
【答案】B
【解析】∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 : SKIPIF 1 < 0 ,∵ SKIPIF 1 < 0 : SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 , SKIPIF 1 < 0
所以 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要不充分条件,故选:B.
3、(2022·江苏宿迁·高三期末)不等式 SKIPIF 1 < 0 成立的一个充分条件是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】C
【解析】 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
所以不等式 SKIPIF 1 < 0 成立的一个充分条件是 SKIPIF 1 < 0 .
故选:C
4、已知p:|x|≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为________;若p是q的必要条件,则m的最小值为________.
【答案】1 4
【解析】由|x|≤m(m>0),得-m≤x≤m.
若p是q的充分条件⇒eq \b\lc\{\rc\ (\a\vs4\al\c1(-m≥-1,m≤4))⇒0
相关试卷
这是一份新高考数学一轮复习讲练测第10章第02讲 排列、组合(十九大题型)(讲义)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲练测第10章第02讲排列组合十九大题型讲义原卷版doc、新高考数学一轮复习讲练测第10章第02讲排列组合十九大题型讲义解析版doc等2份试卷配套教学资源,其中试卷共0页, 欢迎下载使用。
这是一份新高考数学一轮复习讲练测第1章第02讲 常用逻辑用语(练习)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲练测第1章第02讲常用逻辑用语练习原卷版doc、新高考数学一轮复习讲练测第1章第02讲常用逻辑用语练习解析版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份2025年高考数学一轮复习(基础版)课时精讲第1章 §1.2 常用逻辑用语(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第1章§12常用逻辑用语原卷版doc、2025年高考数学一轮复习基础版课时精讲第1章§12常用逻辑用语含解析doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。