![人教版八年级数学上册同步讲义专题12.1 全等三角形(学生版)第1页](http://img-preview.51jiaoxi.com/2/3/16035653/0-1722761072555/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上册同步讲义专题12.1 全等三角形(学生版)第2页](http://img-preview.51jiaoxi.com/2/3/16035653/0-1722761072605/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上册同步讲义专题12.1 全等三角形(学生版)第3页](http://img-preview.51jiaoxi.com/2/3/16035653/0-1722761072660/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版八年级数学上册 同步讲义专题+月考+期中期末试卷(老师版+学生版)
人教版八年级上册12.1 全等三角形课时练习
展开
这是一份人教版八年级上册12.1 全等三角形课时练习,共19页。试卷主要包含了 掌握并能运用全等三角形的性质等内容,欢迎下载使用。
1. 理解全等三角形的概念,能识别全等三角形中的对应边,对应角.
2. 掌握并能运用全等三角形的性质
知识精讲
知识点01 全等图形
知识点
全等形:能够完全重合的两个图形叫做全等形。全等形的形状相同,大小相等,与图形所在的位置无关。
【微点拨】
1)两个全等形的面积一定相等,但面积相等的两个图形不一定是全等形。2)一个图形经过平移、翻折、旋转后,形状、大小都没有改变,只是位置发生了变化,即平移、翻折、旋转前后的图形全等。
【知识拓展1】全等图形的辨别
例1.(2022·浙江·八年级专题练习)如图,有四张小画片,画的都是用七巧板拼成的人物图形,与另外三张与众不同的是( )
A.B.C.D.
【即学即练】
1.(2022·山东济南·七年级期中)下列各选项中的两个图形属于全等形的是( )
A.B.C.D.
2.(2022·江苏·八年级课时练习)下列各组图形中,属全等图形的是( )
A.周长相等的两个等腰三角形B.面积相等的两个长方形
C.面积相等的两个直角三角形D.周长相等的两个圆
【知识拓展2】全等图形相关问题
例2.(2022·全国·八年级专题练习)下列说法不正确的是( )
A.如果两个图形全等,那么它们的形状和大小一定相同
B.图形全等,只与形状、大小有关,而与它们的位置无关
C.全等图形的面积相等,面积相等的两个图形是全等图形
D.全等图形的周长相等,面积相等
【即学即练】
2.(2022·江苏·八年级专题练习)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是( )
A.①②③B.①②④C.①③D.②③
知识点02 全等三角形
知识点
全等三角形:能够完全重合的两个三角形叫做全等三角形。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的表示:全等用符号“≌”表示,读作“全等于”。如三角形△ABC和△DEF全等,记作△ABC≌△DEF。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
【微点拨】
(1)字母顺序确定法∶根据书写规范,按照对应顶点确定对应边、对应角。
(2)图形位置确定法:①公共边一定是对应边;②公共角一定是对应角;③对顶角一定是对应角;
(3)图形大小确定法∶两个全等三角形的最大的边(角)是对应边(角),最小的边(角)是对应边(角)。
【知识拓展1】全等三角形的定义
例1.(2022·江苏·八年级专题练习)下列说法中正确的是( )
A.全等三角形是指形状相同的两个三角形B.全等三角形是指大小相同的两个三角形
C.全等三角形是指周长相等的两个三角形D.全等三角形的形状、大小完全相同
【即学即练1】
1.(2021·山东烟台·七年级期末)如图是小明用七巧板拼成的一个机器人,其中全等三角形有( )
A.1 对B.2 对C.3 对D.4 对
【知识拓展2】全等三角形的对应顶点、边、角
例2.(2022·重庆·八年级专题练习)如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,AC=A′C′,那么△ABC≌△A′B′C′.
说理过程如下:
把△ABC放到△A′B′C′上,使点A与点A′重合,由于 = ,所以可以使点B与点B′重合.又因为 = ,所以射线 能落在射线 上,这时因为 = ,所以点 与 重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.
【即学即练2】
2.(2022·浙江·八年级专题练习)△ABC中,∠B=∠C,若与△ABC全等的三角形中有一个角是92°,则这个角在△ABC中的对应角是( )
A.∠AB.∠A或∠BC.∠CD.∠B或∠C
3.(2022·重庆市天星桥中学八年级开学考试)如图,△ABD≌△CDB,若AB∥CD,则AB的对应边是( )
A.DBB.BCC.CDD.AD
知识点03 全等三角形的性质
知识点
全等三角形的对应边相等,全等三角形的对应角相等。
全等三角形对应边上的高、中线分别相等,对应角的平分线相等,面积相等,周长相等。
【知识拓展1】全等三角形的性质(概念类)
例1.(2022·黑龙江哈尔滨·七年级期末)下列命题中:①形状相同的两个三角形是全等形;②在两个三角形中,相等的角是对应角,相等的边是对应边;③全等三角形的对应边相等;④全等三角形对应边上的高相等.其中真命题有( )个.
A.B.C.D.
【即学即练1】
1.(2022·福建·福州三牧中学八年级期中)有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有( )
A.1个B.2个C.3个D.4个
【知识拓展2】全等三角形的性质(计算类)
例2.(2022·河北廊坊·八年级期末)如图,已知△ABC△BDE,,则∠ABE的度数为( )
A.30°B.35°C.40°D.45°
【即学即练2】
2.(2022·江西景德镇·七年级期末)如图,点B、D、E、C在同一直线上,△ABD≌△ACE,∠AEC=100°,则∠DAE=( )
A.10°B.20°C.30°D.80°
3.(2022·海南海口·七年级期末)如图,已知≌,,,则的长为( )
A.B.C.D.
【知识拓展3】全等三角形的性质(证明类)
例3.(2022·绵阳市·八年级专题练习)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.
(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,?
【即学即练3】
3.(2022·全国·八年级专题练习)如图,△ABD≌△EBC,AB=12,BC=5,A,B,C三点共线,则下列结论中:①CD⊥AE;②AD⊥CE;③∠EAD=∠ECD;正确的是____.
4.(2022·安徽淮北·八年级期末)如图,点A,O,B在同一直线上,且.证明:
(1)点C,O,D在同一直线上;(2).
能力拓展
考法01 利用全等三角形求坐标
【典例1】(2022·河北·八年级课时练习)如图,在中,,,,D是坐标平面上一点,若以A,B,D为顶点的三角形与全等,则点D的坐标是________.
变式1.(2022·江苏泰州·七年级期末)如图,的顶点、、都在小正方形的顶点上,我们把这样的三角形叫做格点三角形.则图中与有唯一公共顶点且与全等的格点三角形共有________个(不包括).
变式2.(2022·江西八年级阶段练习)如图,正方形网格中,每一格表示1个单位长度,在所给网格中确定一点(不与点重合),使得与全等,则点的坐标是______.
考法02 全等三角形中的动态问题(分类讨论)
【典例2】(2022·成都市·八年级课时练习)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,当P、Q两点同时出发t分钟后△CAP全等于△PBQ,则此时t的值是( )
A.4B.6C.8D.10
变式1.(2022·江苏·八年级专题练习)如图,在四边形中,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动,设运动时间为,当与以,,为顶点的三角形全等时,点的运动速度为______.
变式2.(2021·辽宁·沈阳市第一三四中学八年级期中)如图,在△ABC中,厘米,厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为______时,能够在某一时刻使与△CQP全等.
分层提分
题组A 基础过关练
1.(2022·江苏扬州·八年级期末)下列说法正确的是( )
A.全等三角形的周长和面积分别相等B.全等三角形是指形状相同的两个三角形
C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形
2.(2022·浙江·八年级专题练习)如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )
A.∠1与∠2是对应角B.∠B与∠D是对应角
C.BC与AC是对应边D.AC与CA是对应边
3.(2022·浙江金华·八年级阶段练习)下列个图形中,是全等图形的是( )
A.,,,B.与C.,,D.与
4.(2022·重庆大足·八年级期末)如图,和全等,且,对应.若,,,则的长为( )
A.4B.5C.6D.无法确定
5.(2022·山东聊城·八年级期末)如图所示的是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移得到△DEF.若cm,cm,cm,则图中阴影部分面积为( )
A.47cm2B.48 cm2C.49 cm2D.50 cm2
6.(2022·江苏·八年级专题练习)如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是______.
7.(2022·山东菏泽·七年级期末)如图,,,则______.
8.(2022·江苏·八年级课时练习)如图,用三种不同的方法沿网格线把正方形分割成4个全等的图形(三种方法得到的图形相互间不全等).
9.(2022·广西·八年级专题练习)如图,≌,AC和AE,AB和AD是对应边,点E在边BC上,AB与DE交于点F.求证:
10.(2022·湖南·八年级课时练习)如图,已知,且点B,C,D在同一条直线上,延长交于点F.(1)求证:;(2)已知,,求的长度.
题组B 能力提升练
1.(2022·浙江·八年级专题练习)如图,△ADF≌△CBE,有以下结论:①AF=CE;②∠1=∠2;③BE=CF;④AE=CF.其中正确的有( )
A.1个B.2个C.3个D.4个
2.(2021·河南周口·八年级期中)用两个全等的含60°的直角三角板能拼成几种四边形( )
A.3种B.4种C.5种D.6种
3.(2022·全国·八年级课时练习)如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻璃店配一块与原来一样大小的五边形玻璃,那么最省事的方法应该带玻璃碎片( )
A.①B.①②C.①③D.①③④
4.(2022·海南省直辖县级单位·七年级期末)如图1,在中,,.若,,则的度数为 ( )
A.18°B.30°C.32°D.38°
5.(2022·陕西渭南·八年级期末)如图,点 D、E在BC上,ABE≌ACD,BC=10,DE=4,则 BD的长是( )
A.6B.5C.4D.3
6.(2022·江苏·八年级课时练习)如图,把△ABC沿线段DE折叠,使点B落在点F处;若,∠A=70°,AB=AC,则∠CEF的度数为( )
A.55°B.60°C.65°D.70°
7.(2022·四川·沐川县教师进修学校七年级期末)如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠P+∠Q=__________度.
8.(2021·广东·道明外国语学校八年级阶段练习)如图,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④ABDC.其中成立的是______.(填上序号即可)
9.(2022·全国·八年级课时练习)如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.
10.(2022·四川广元·八年级期末)如图,,,,,求和的度数.
11.(2022·江苏·八年级课时练习)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:
(1)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.试说明AD=BE;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.
解:∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,(等边三角形的性质)
∴∠ACD= (等式的性质)
∴△ACD绕点C按逆时针方向旋转 度,能够与 重合
∴△ACD≌ (旋转变换的性质)
∴AD=BE( );
(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可).
12.(2022·浙江温州·中考模拟)如图,在方格纸中,△PQR的三个顶点及A,B,C,D,E五个点都在小方格的顶点上,现以A,B,C,D,E中的三个顶点为顶点画三角形,
(1)在图甲中画出一个三角形与△PQR全等;
(2)在图乙中画出一个三角形与△PQR面积相等 但不全等.
13.(2022·全国·八年级专题练习)如图,A,E,C三点在同一直线上,且△ABC≌△DAE.
(1)线段DE,CE,BC有怎样的数量关系?请说明理由.
(2)请你猜想△ADE满足什么条件时,DE∥BC,并证明.
题组C 培优拔尖练
1.(2022·全国·八年级课时练习)全等三角形又叫做合同三角形,平面内的合同三角形分为真合同三角形与镜面合同三角形,两个真合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻折,下列各组合同三角形中,是镜面合同三角形的是( )
A.B.C.D.
2.(2022·全国·八年级专题练习)罗同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等三角形组成,第(2)个图案由4个全等三角形组成,第(3)个图案由7个全等三角形组成,第(4)个图案由12个全等三角形组成,则第(6)个图案中全等三角形的个数为( )
A.25B.38C.70D.135
3.(2022·江苏·八年级课时练习)如图,已知,平分,若,,则的度数是( )
A.B.C.D.
4.(2022·河北·八年级专题练习)如图,,垂足为E.若,则的大小为( )
A.B.C.D.
5.(2022·广东·八年级课时练习)如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )
A.1或3 B.1或 C.1或或 D.1或或5
6.(2022·江苏·八年级课时练习)如图,是一个的正方形网格,则∠1+∠2+∠3+∠4=________.
7.(2022·甘肃·张掖四中八年级期末)如图,中点A的坐标为,点C的坐标为如果要使以点A、B、D为顶点的三角形与全等(非重合),那么点D的坐标可以是__________.
8.(2022·四川雅安·七年级期末)如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′,BE,CD交于点F.若∠BAC=40°,则∠BFC的度数为 _____.
9.(2022·全国·八年级课时练习)(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
①写出图中一对全等的三角形,并写出它们的所有对应角;②设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示);③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律. (2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.
10.(2022·上海·八年级专题练习)已知点A的坐标为(﹣3,2),设点A关于x轴对称的点为点B,点A关于原点的对称点为点C,过点C作y轴的平行线交x轴于点D,
(1)点B的坐标是 ,点C的坐标是 .
(2)已知在线段BC上存在一点E,恰好能使△ABE≌△DEC,那么此时点E的坐标是 .
11.(2022·江苏·八年级课时练习)如图所示,D,A,E在同一条直线上,BD⊥DE于D,CE⊥DE于E,且△ABD≌△CAE,AD=2cm,BD=4cm,求
(1)DE的长;(2)∠BAC的度数.
相关试卷
这是一份人教版八年级数学上册同步精品讲义专题12.1全等三角形(学生版+解析),共52页。试卷主要包含了 掌握并能运用全等三角形的性质等内容,欢迎下载使用。
这是一份人教版八年级上册12.1 全等三角形优秀练习题,文件包含知识点121全等三角形原卷版docx、知识点121全等三角形解析版docx等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份人教版八年级上册第十二章 全等三角形12.1 全等三角形优秀课时训练,文件包含提高练121全等三角形原卷版docx、提高练121全等三角形解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)