终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    人教版九年级数学下册同步讲义专题第8课 相似全章复习与巩固(学生版)

    立即下载
    加入资料篮
    人教版九年级数学下册同步讲义专题第8课  相似全章复习与巩固(学生版)第1页
    人教版九年级数学下册同步讲义专题第8课  相似全章复习与巩固(学生版)第2页
    人教版九年级数学下册同步讲义专题第8课  相似全章复习与巩固(学生版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版九年级数学下册同步讲义专题第8课 相似全章复习与巩固(学生版)

    展开

    这是一份人教版九年级数学下册同步讲义专题第8课 相似全章复习与巩固(学生版),共7页。试卷主要包含了相似图形等内容,欢迎下载使用。
    目标导航
    知识精讲
    知识点01 相似图形及比例线段
    1.相似图形:在数学上,我们把 称为相似图形(similar figures).
    要点诠释:
    (1) 相似图形就是指形状相同,但大小不一定相同的图形;
    (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;
    2.相似多边形
    如果两个多边形的 ,对应边的 ,我们就说它们是相似多边形.
    要点诠释:
    (1)相似多边形的定义既是判定方法,又是它的性质.
    (2)相似多边形对应边的比称为相似比.
    3. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.
    要点诠释:
    (1)若a:b=c:d ,则ad=bc;(d也叫第四比例项)
    (2)若a:b=b:c ,则 =ac(b称为a、c的比例中项).
    知识点02 相似三角形
    相似三角形的判定:
    判定方法(一): ,所构成的三角形和原三角形相似.
    判定方法(二): ,那么这两个三角形相似.
    判定方法(三): ,那么这两个三角形相似.
    要点诠释:
    此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.
    判定方法(四): ,那么这两个三角形相似.
    要点诠释:
    要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.
    相似三角形的性质:
    (1)相似三角形的 ,对应边的 ;
    (2)相似三角形中的 等于相似比;
    相似三角形 , , 都等于相似比.
    要点诠释:
    要特别注意“对应”两个字,在应用时,要注意找准对应线段.
    (3) 相似三角形周长的比等于相似比;
    (4)相似三角形面积的比等于相似比的平方。
    3.相似多边形的性质:
    (1)相似多边形的对应角相等,对应边的比相等.
    (2)相似多边形的周长比等于相似比.
    (3)相似多边形的面积比等于 .
    知识点03 位似
    1.位似图形定义: 如果两个图形不仅是相似图形,而且 ,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
    2.位似图形的性质:
    (1)位似图形的对应点和位似中心在 ;
    (2) 位似图形的 等于相似比;
    (3)位似图形中 的对应线段平行.
    要点诠释:
    (1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.
    (2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点
    为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
    知识点04 黄金分割
    1.定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫 .
    2.黄金三角形: 的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.
    黄金三角形性质:底角平分线将其腰黄金分割.
    知识点04 射影定理
    在Rt△ABC中,∠ACB=90°,CD⊥AB于D,
    ∴△ABC∽△ACD∽△CBD(“角角”)
    ∴ ;

    (射影定理);
    (等积).
    能力拓展
    考法01 相似三角形
    【典例1】已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,这两个三角形相似?
    【即学即练1】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA; (2)求线段OM的长度.
    【典例2】如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
    A. B. C. D.
    考法02 相似三角形的综合应用
    【典例3】已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.
    (1)求证:DE⊥BE;
    (2)如果OE⊥CD,求证:BD•CE=CD•DE.
    【典例4】如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.
    (1)求证:△ADF∽△ACG;
    (2)若,求的值.
    【即学即练2】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
    (1)求证:△BDE∽△BAC;
    (2)已知AC=6,BC=8,求线段AD的长度.
    【典例5】如图,已知在梯形ABCD中,AD//BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
    (1)求证:梯形ABCD是等腰梯形.
    (2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.
    设PC=x,MQ=y,求y与x的函数关系式.
    【即学即练3】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.
    (1)求出y关于x的函数关系式,并写出自变量x的取值范围;
    (2)当x为何值时,△BDE的面积S有最大值,最大值为多少?

    考法03 黄金分割用
    【典例6】如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.
    【即学即练4】如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.
    求证:(1)AD=BD=BC; (2)点D是线段AC的黄金分割点.
    课程标准
    1、了解比例的基本性质,线段的比、成比例线段;
    2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、 对 应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;
    3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;
    4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.

    相关试卷

    人教版七年级数学下册同步精品讲义专题第14课 平面直角坐标系全章复习与巩固(学生版):

    这是一份人教版七年级数学下册同步精品讲义专题第14课 平面直角坐标系全章复习与巩固(学生版),共7页。

    人教版七年级数学下册同步精品讲义专题第10课 实数全章复习与巩固(学生版):

    这是一份人教版七年级数学下册同步精品讲义专题第10课 实数全章复习与巩固(学生版),共6页。试卷主要包含了实数的分类,1010010001…,实数与数轴上的点一 一对应,实数的三个非负性及性质,实数的运算,实数的大小的比较等内容,欢迎下载使用。

    人教版七年级数学下册同步精品讲义专题第05课 平行线与相交线全章复习与巩固(学生版)-:

    这是一份人教版七年级数学下册同步精品讲义专题第05课 平行线与相交线全章复习与巩固(学生版)-,共6页。试卷主要包含了对顶角、邻补角,垂线及性质、距离, 了解平移的概念及性质等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map