新高考专用备战2024年高考数学易错题精选专题06解三角形及应用学生版
展开
这是一份新高考专用备战2024年高考数学易错题精选专题06解三角形及应用学生版,共14页。试卷主要包含了方法技巧等内容,欢迎下载使用。
易错点一:易忽视三角形解的个数(解三角形多解情况)
1.方法技巧:解三角形多解情况
在△ABC中,已知a,b和A时,解的情况如下:
2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:
(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;
(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;
(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;
(4)代数变形或者三角恒等变换前置;
(5)含有面积公式的问题,要考虑结合余弦定理使用;
(6)同时出现两个自由角(或三个自由角)时,要用到.
技巧:正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题
问题1:已知两角及其一边,求其它的边和角。这时有且只有一解。
问题2:已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。
题设三角形中,已知一个角和两个边,判断三角形个数,遵循以下步骤
第一步:先画一个角并标上字母
第二步:标斜边(非对角边)
第三步:画角的高,然后观察()
易错提醒:利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数.
例 .设的内角所对的边分别为,则下列结论正确的是( )
A.若,则
B.若,则为钝角三角形
C.若,则符合条件的有两个
D.若,则为等腰三角形或直角三角形
变式1.在中,内角所对的边分别为,则下列说法正确的是( )
A.
B.若,且,则为等边三角形
C.若,则是等腰三角形
D.在中,,则使有两解的的范围是
变式2.在中,内角的对边分别为.则下列结论正确的是( )
A.若,则
B.若,则角为钝角
C.若均不为直角,则
D.若,则唯一确定
变式3.在中,角,,所对的边分别是,,,下列叙述正确的是( )
A.若,,,则满足条件的三角形有且只有一个
B.若,则为钝角三角形
C.若,则为等腰三角形
D.若不是直角三角形,则
1.在中,已知,,若有唯一值,则实数的取值范围为( )
A.B.
C.D.
2.在中,角所对的边为,有如下判断,其中正确的判断是( )
A.若,则为等腰直角三角形
B.若,则
C.若,则符合条件的有两个
D.在锐角三角形中,不等式恒成立
3.在中,角所对的边分别为,以下说法中正确的是( )
A.若,则
B.若,则符合条件的三角形有一个
C.若,则为钝角三角形
D.若,则直角三角形
4.的内角A,B,C的对边分别为a,b,c,则下列说法正确的是( )
A.若,则
B.若,,,则有两解
C.若为钝角三角形,则
D.若,则此三角形为等腰三角形
5.对于△ABC,有以下判断,其中正确的是( )
A.若,则△ABC为等腰三角形
B.若,则
C.若,,,则符合条件的三角形有两个
D.若,则△ABC是锐角三角形
6.对于,有如下判断,其中正确的判断是( )
A.若,则为等腰三角形
B.若,则
C.若,则符合条件的有两个
D.若,则是钝角三角形
7.已知的内角A,B,C所对的边分别为a,b,c,下列说法正确的是( )
A.若,则
B.若,则
C.若,则为等腰三角形
D.若,,,则只有一解
8.已知的内角的对边分别为则下列说法正确的是( )
A.若,则有一个解
B.若,则有两个解
C.若,则为等腰三角形
D.若,则为钝角三角形
9.的内角A,B,C的对边分别为a,b,c,则下列说法正确的是( )
A.若,则
B.若,,,则有两解
C.若为钝角三角形,则
D.若,,则的面积是3
10.的内角的对边分别为、,则下列说法正确的是( )
A.若,则
B.若,则有两解
C.若为钝角三角形,则
D.若三角形为斜三角形,则
11.对于中,有如下判断,其中正确的判断是( )
A.若,,,则符合条件的有两个
B.若,则为等腰三角形或直角三角形
C.若,则的最小值为
D.若点在所在平面且,,则点的轨迹经过的外心
易错点二:解三角形时,出现类似于sin2A=sin2B易漏解(解三角形问题)
《正弦定理》
①正弦定理:
②变形:
③变形:
④变形:
⑤变形:
《余弦定理》
①余弦定理:
②变形:
核心问题:什么情况下角化边?什么情况下边化角?
⑴当每一项都有边且次数一样时,采用边化角
⑵当每一项都有角《》且次数一样时,采用角化边
⑶当每一项都是边时,直接采用边处理问题
⑷当每一项都有角《》及边且次数一样时,采用角化边或变化角均可
三角形面积公式
①
②其中分别为内切圆半径及的周长
推导:将分为三个分别以的边长为底,内切圆与边相交的半径为高的三角形,利用等面积法即可得到上述公式
③(为外接圆的半径)
推导:将代入可得
将代入
可得
④
⑤海伦公式(其中)
推导:根据余弦定理的推论
令,整理得
正规方法:面积公式+基本不等式
①
②
③
易错提醒:当解题过程中出现类似于sin2A=sin2B这样的情况要注意结合三角形内角范围进行讨论,另外当题设中出现锐角三角形时一定要注意条件之间的相互“限制”
例.对于,有如下命题:①若,则为等腰三角形;②若,则为直角三角形;③若,则为钝角三角形.其中正确命题的序号是( )
A.①②B.①③C.③D.②③
变式1.在ΔABC中,已知,那么ΔABC一定是( )
A.等腰或直角三角形B.等腰三角形
C.直角三角形D.等边三角形
变式2.在中,三个内角A,B,C所对的边分别为a,b,c,若,则是( )
A.直角三角形B.等边三角形
C.等腰三角形或直角三角形D.等腰直角三角形
变式3.在中,角所对的边分别为,则下列结论正确的个数( )
(1)若,则
(2)若,则一定为等腰三角形
(3)若,则一定为直角三角形
(4)若,且该三角形有两解,则边的范围是
A.1B.2C.3D.4
1.在中,,则( )
A.为直角B.为钝角C.为直角D.为钝角
2.在中,若 ,则该三角形的形状一定是( )
A.等腰三角形B.等腰直角三角形
C.等腰三角形或直角三角形D.等边三角形
3.在中,角、、的对边分别为、、,若,则的形状为( )
A.正三角形B.等腰三角形或直角三角形
C.直角三角形D.等腰直角三角形
4.在中,三个内角,,所对的边分别为,,,若,则的形状为( )
A.等腰三角形B.等边三角形
C.等腰直角三角形D.等腰或直角三角形
5.在中,内角、、的对边分别为、、,,则是( )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形
6.已知的内角A,B,C所对的边分别为a,b,c,,且,则一定是( )
A.等腰三角形B.钝角三角形C.直角三角形D.锐角三角形
7.在中,已知,则的形状为( )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰或直角三角形
8.在△ABC中,角A、B、C所对的边分别为a、b 、c, 若 则该三角形一定是( )
A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形
C.等腰直角三角形D.等腰三角形或直角三角形
9.在中,角的对边分别为,且满足,则的形状是( ).
A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形
10.在中,若,则这个三角形是( )
A.底角不等于的等腰三角形B.锐角不等于的直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形
11.的三内角的对边分别为且满足,且,则的形状是( )
A.等腰三角形B.等边三角形
C.等腰直角三角形D.等腰三角形或直角三角形
易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题)
解三角形的实际应用问题的类型及解题策略
1、求距离、高度问题
(1)选定或确定要创建的三角形,要先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的量.
(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
2、求角度问题
(1)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步,画图时,要明确仰角、俯角、方位角以及方向角的含义,并能准确找到这些角.
(2)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合应用.
易错提醒:实际问题应用中有关名词、术语也是容易忽视和混淆的。要注意理解仰角、俯角、方向角、方位角、坡度的具体含义
例 .如图所示,,两处各有一个垃圾中转站,在的正东方向18km处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面处建一个发电厂,利用垃圾发电.要求发电厂到两个垃圾中转站的距离(单位:km)与它们每天集中的生活垃圾量(单位:吨)成反比,现估测得,两处中转站每天集中的生活垃圾量分别约为40吨和50吨.
(1)当时,求的值;
(2)发电厂尽量远离居民区,也即要求的面积最大,问此时发电厂与垃圾中转站的距离为多少?
变式1.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,B,C,D三地位于同一水平面上,这种仪器在B地进行弹射实验,两地相距,,在C地听到弹射声音的时间比D地晚秒,在C地测得该仪器至最高点A处的仰角为.(已知声音的传播速度为),求:
(1)B,C两地间的距离;
(2)这种仪器的垂直弹射高度AB.
变式2.南京市人民中学创建于1887年,是南京市办学历史最长的中学之一,位于南京市的珠江路南侧,中山路东侧,长江路北侧如图所示的位置.南京人民中学到长江路和中山路十字路口约330米,长江路和中山路夹角约为70.5°,现小王和小张正位于如图所示的位置分别距长江路和中山路十字路口200米,300米,并分别按如图所示的方向散步,速度均为60米/分钟
(1)起初两人直线距离多少米?(参考数据:);
(2)t分钟后两人间直线的距离是多少?(从现位置开始计时到小张到南京市人民中学大门结束);
(3)什么时候两人间的直线距离最短,最短距离时多少?(忽略路宽、等侯红绿灯时间)
变式3.如图,某城市有一条从正西方通过市中心后转向东偏北方向的公路,为了缓解城市交通压力,现准备修建一条绕城高速公路,并在上分别设置两个出口在的东偏北的方向(两点之间的高速公路可近似看成直线段),由于之间相距较远,计划在之间设置一个服务区.
(1)若在的正北方向且,求到市中心的距离和最小时的值;
(2)若在市中心的距离为,此时在的平分线与的交点位置,且满足,求到市中心的最大距离.
1.某景区有一人工湖,湖面有两点,湖边架有直线型栈道,长为,如图所示.现要测是两点之间的距离,工作人员分别在两点进行测量,在点测得,;在点测得.(在同一平面内)
(1)求两点之间的距离;
(2)判断直线与直线是否垂直,并说明理由.
2.如图,某乡镇绿化某一座山体,以地面为基面,在基面上选取A,B,C,D四个点,使得,测得,,.
(1)若B,D选在两个村庄,两村庄之间有一直线型隧道,且,,求A,C两点间距离;
(2)求的值.
3.某数学建模活动小组在开展主题为“空中不可到达两点的测距问题”的探究活动中,抽象并构建了如图所示的几何模型,该模型中,均与水平面垂直.在已测得可直接到达的两点间距离,的情况下,四名同学用测角仪各自测得下列四组角中的一组角的度数,①,,,②,,,③,,,④,,.
(1)请同学们指出其中一定能唯一确定,之间的距离的组号;(指出所有满足条件的组号)
(2)若已知,,,,,,,请你结合自己在(1)中的选择,从中选出一组利用所给数据,求的值.(若多做,按第一种方案给分)
4.如图,某观察站B在城A的南偏西20°的方向,由城A出发的一条公路走向是南偏东40°,在B处测得公路上距B处32km的C处有一人正沿公路向A城走去,走了20km之后到达D处,此时B,D间的距离为21km.这个人还要走多少路才能到达A城?
5.如图,某日中午12:00甲船以24km/h的速度沿北偏东40°的方向驶离码头,下午3:00到达地.下午1:00乙船沿北偏东125°的方向匀速驶离码头,下午3:00到达地.若在的正南方向,则乙船的航行速度是多少?(精确到1km/h)
6.如图,某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西方向且与该港口相距的处,并以的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以的航行速度匀速行驶,经过与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
7.一颗人造地球卫星在地球上空1600km处沿着圆形的轨道运行,每2h沿轨道绕地球旋转一圈.假设卫星于中午12点正通过卫星跟踪站A点的正上空,地球半径约为6400km.
(1)求人造卫星与卫星跟踪站在12:03时相隔的距离是多少.
(2)如果此时跟踪站天线指向人造卫星,那么天线瞄准的方向与水平线的夹角的余弦值是多少?(参考数据:,)
8.如图,某海产养殖户承包一片靠岸水域,AB,AC为直线海岸线,,,.
(1)求B与C之间的直线距离.
(2)在海面上有一点D(A,B,C,D在同一平面上),沿线段DB和DC修建养殖网箱,若DB和DC上的网箱每米可获得30元的经济收益,且,求这两段网箱获得的最高经济总收益.
9.山东省滨州市的黄河楼位于蒲湖水面内东南方向的东关岛上,渤海五路以西,南环路以北.整个黄河楼颜色质感为灰红,意味黄河楼气势恢宏,更在气势上体现黄河的宏壮.如图,小张为了测量黄河楼的实际高度,选取了与楼底在同一水平面内的两个测量基点,现测得,在点处测得黄河楼顶的仰角为,求黄河楼的实际高度(结果精确到,取).
10.在长江某渡口处,江水以5km/h的速度向东流.一渡船从长江南岸的A码头出发,预定要在0.1h后到达北岸的B码头(如图).设为正北方向,已知B码头在A码头北偏东的方向上,并与A码头相距1.2km.该渡船应按什么方向航行?速度是多少(角度精确到,速度确到0.1km/h)?
11.如图,为了测量河对岸两点之间的距离,在河岸这边取点,测得,,,,.设在同一平面内,试求两点之间的距离(精确到1m).
A为锐角
A为钝角或直角
图形
关系式
解的个数
一解
两解
一解
一解
无解
相关试卷
这是一份新高考专用备战2024年高考数学易错题精选专题05三角函数学生版,共25页。试卷主要包含了角的概念,弧度制,任意角的三角函数,三角函数线,已知角终边上有一点,则为,已知角,终边上有一点,则等内容,欢迎下载使用。
这是一份新高考专用备战2024年高考数学易错题精选专题04导数及其应用学生版,共18页。试卷主要包含了导数的概念和几何性质,导数的运算等内容,欢迎下载使用。
这是一份新高考专用备战2024年高考数学易错题精选专题03不等式学生版,共11页。试卷主要包含了比较大小基本方法,若,则下列不等式中正确的是,下列命题中正确的是,设,则“”是“”的,已知,,,下列四个选项能推出的有,已知,则等内容,欢迎下载使用。