所属成套资源:新高考数学一轮复习讲义 (2份打包,原卷版+含解析)
新高考数学一轮复习讲义 第02讲 常用逻辑用语(2份打包,原卷版+含解析)
展开
这是一份新高考数学一轮复习讲义 第02讲 常用逻辑用语(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第02讲常用逻辑用语原卷版doc、新高考数学一轮复习讲义第02讲常用逻辑用语含解析doc等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
一、知识点梳理
1.充分条件、必要条件、充要条件
(1)定义
如果命题“若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ”为真(记作 SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分条件;同时 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要条件.
(2)从逻辑推理关系上看
①若 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分不必要条件;
②若 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要不充分条件;
③若 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的的充要条件(也说 SKIPIF 1 < 0 和 SKIPIF 1 < 0 等价);
④若 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 不是 SKIPIF 1 < 0 的充分条件,也不是 SKIPIF 1 < 0 的必要条件.
对充分和必要条件的理解和判断,要搞清楚其定义的实质: SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分条件,同时 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要条件.所谓“充分”是指只要 SKIPIF 1 < 0 成立, SKIPIF 1 < 0 就成立;所谓“必要”是指要使得 SKIPIF 1 < 0 成立,必须要 SKIPIF 1 < 0 成立(即如果 SKIPIF 1 < 0 不成立,则 SKIPIF 1 < 0 肯定不成立).
2.全称量词与存在童词
(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“ SKIPIF 1 < 0 ”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对 SKIPIF 1 < 0 中的任意一个 SKIPIF 1 < 0 ,有 SKIPIF 1 < 0 成立”可用符号简记为“ SKIPIF 1 < 0 ”,读作“对任意 SKIPIF 1 < 0 属于 SKIPIF 1 < 0 ,有 SKIPIF 1 < 0 成立”.
(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“ SKIPIF 1 < 0 ”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在 SKIPIF 1 < 0 中的一个 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 成立”可用符号简记为“ SKIPIF 1 < 0 ”,读作“存在 SKIPIF 1 < 0 中元素 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 成立”(存在量词命题也叫存在性命题).
3.含有一个量词的命题的否定
(1)全称量词命题 SKIPIF 1 < 0 的否定 SKIPIF 1 < 0 为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)存在量词命题 SKIPIF 1 < 0 的否定 SKIPIF 1 < 0 为 SKIPIF 1 < 0 .
注:全称、存在量词命题的否定是高考常见考点之一.
【常用结论】
1.从集合与集合之间的关系上看:设 SKIPIF 1 < 0 .
(1)若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分条件( SKIPIF 1 < 0 ), SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要条件;若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分不必要条件, SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要不充分条件,即 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ;
注:关于数集间的充分必要条件满足:“小 SKIPIF 1 < 0 大”.
(2)若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要条件, SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分条件;
(3)若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为充要条件.
2.常见的一些词语和它的否定词如下表
(1)要判定一个全称量词命题是真命题,必须对限定集合 SKIPIF 1 < 0 中的每一个元素 SKIPIF 1 < 0 证明其成立,要判断全称量词命题为假命题,只要能举出集合 SKIPIF 1 < 0 中的一个 SKIPIF 1 < 0 ,使得其不成立即可,这就是通常所说的举一个反例.
(2)要判断一个存在量词命题为真命题,只要在限定集合 SKIPIF 1 < 0 中能找到一个 SKIPIF 1 < 0 使之成立即可,否则这个存在量词命题就是假命题.
3.全称量词和存在量词思维导图
二、题型分类精讲
题型一 充分、必要条件的判断
策略方法 判断充分、必要条件的几种方法
【典例1】已知 SKIPIF 1 < 0 是无穷等差数列,其前项和为 SKIPIF 1 < 0 ,则“ SKIPIF 1 < 0 为递增数列”是“存在 SKIPIF 1 < 0 使得 SKIPIF 1 < 0 ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】A
【分析】利用充分条件和必要条件的定义判断.
【详解】解:因为 SKIPIF 1 < 0 是无穷等差数列,若 SKIPIF 1 < 0 为递增数列,
所以公差 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 表示取整函数,
所以存在正整数 SKIPIF 1 < 0 ,有 SKIPIF 1 < 0 ,故充分;
设数列 SKIPIF 1 < 0 为5,3,1,-1,…,满足 SKIPIF 1 < 0 ,但 SKIPIF 1 < 0 ,
则数列 SKIPIF 1 < 0 是递减数列,故不必要,
故选:A
【典例2】条件 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的一个必要不充分条件是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【分析】对于命题 SKIPIF 1 < 0 ,由参变量分离法可得 SKIPIF 1 < 0 ,求出函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上的最大值,可得出实数 SKIPIF 1 < 0 的取值范围,再利用必要不充分条件的定义可得出合适的选项.
【详解】若 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
因为函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递减,在 SKIPIF 1 < 0 上单调递增,
且 SKIPIF 1 < 0 ,
故当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 的一个必要不充分条件是 SKIPIF 1 < 0 .
故选:A.
【题型训练】
一、单选题
1.(2021春·广东梅州·高三校考期中)设 SKIPIF 1 < 0 均为单位向量,则“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的( )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【分析】根据向量的运算法则和公式 SKIPIF 1 < 0 进行化简,结合充分条件和必要条件的判定方法,即可求解.
【详解】由 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
可得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即充分性成立;
反之:由 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,即必要性成立,
综上可得, SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分必要条件.
故选:C.
2.(2023春·湖北·高三安陆第一高中校联考阶段练习)若 SKIPIF 1 < 0 ,则“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】A
【分析】利用等比中项的性质结合充分不必要条件的判定即可得到答案.
【详解】因为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,故前者可以推出后者,
若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,举例 SKIPIF 1 < 0 ,则不满足 SKIPIF 1 < 0 ,故后者无法推出前者,
所以“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列”的充分不必要条件.
故选:A.
3.(2023·重庆·统考二模)“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】A
【分析】将已知转化为集合的关系再利用充分条件和必要条件的定义处理即可.
【详解】由 SKIPIF 1 < 0 可得其解集为: SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 可得其解集为: SKIPIF 1 < 0 .
而 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ,即由“ SKIPIF 1 < 0 ”可以推出“ SKIPIF 1 < 0 ”,反过来“ SKIPIF 1 < 0 ”不能推出“ SKIPIF 1 < 0 ”,故“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件.
故选:A
4.(2023·天津滨海新·天津市滨海新区塘沽第一中学校考模拟预测)设向量 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【分析】首先根据 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值,再判断充分,必要条件.
【详解】由条件可知, SKIPIF 1 < 0 ,
得 SKIPIF 1 < 0 ,化简得 SKIPIF 1 < 0 ,
得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 或 SKIPIF 1 < 0
所以“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的必要不充分条件.
故选:B
二、填空题
5.(2022秋·湖南长沙·高三校考阶段练习)王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的___________条件.(填“充分不必要,必要不充分,充要,既不充分也不必要”)
【答案】必要不充分
【分析】根据古诗的含义依次判断充分性和必要性即可.
【详解】由题意知:“攻破楼兰”未必“返回家乡”,充分性不成立;“返回家乡”则必然“攻破楼兰”,必要性成立;
SKIPIF 1 < 0 “攻破楼兰”是“返回家乡”的必要不充分条件.
故答案为:必要不充分.
6.(2023·全国·高三专题练习)已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ; SKIPIF 1 < 0 ,则p是q的______条件.(在充分不必要、必要不充分、充要、既不充分也不必要中选一个正确的填入)
【答案】必要不充分
【分析】将全称命题为真命题转化为不等式恒成立,利用充分必要条件判断即可求解
【详解】因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 为真命题等价于不等式 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上恒成立,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 显然不成立;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
综上,实数 SKIPIF 1 < 0 的取值范围为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
又因为 SKIPIF 1 < 0 ,
所以p是q的必要不充分条件.
故答案为:必要不充分.
7.(2023·宁夏中卫·统考二模)命题 SKIPIF 1 < 0 ,命题 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的____________条件.
(填“充分不必要”或“必要不充分”或“充要”或“既不充分也不必要”)
【答案】充分不必要
【分析】先解 SKIPIF 1 < 0 ,然后根据条件判断即可.
【详解】因为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
而 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分不必要条件.
故答案为:充分不必要.
8.(2023春·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的_________条件.(请从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选择一个)
【答案】充分不必要.
【分析】利用弦化切得 SKIPIF 1 < 0 ,将 SKIPIF 1 < 0 整体代入即可证明其充分性成立,令 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,必要性不成立.
【详解】若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
反之,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件.
故答案为:充分不必要.
三、解答题
9.(2023秋·河南许昌·高三校考期末)已知集合 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求A;
(2)若“x∈A”是“x∈B”的充分不必要条件,求m的取值范围.
【答案】(1) SKIPIF 1 < 0
(2) SKIPIF 1 < 0
【分析】(1)根据一元二次不等式的解法解出 SKIPIF 1 < 0 即可;
(2)由题意知若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件则集合 SKIPIF 1 < 0 是集合 SKIPIF 1 < 0 的真子集,求出m的取值范围,再讨论即可.
【详解】(1)由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以集合 SKIPIF 1 < 0 .
(2)若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件,
则集合 SKIPIF 1 < 0 是集合 SKIPIF 1 < 0 的真子集,
由集合 SKIPIF 1 < 0 不是空集,故集合 SKIPIF 1 < 0 也不是空集,
所以 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 满足题意,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 满足题意,
故 SKIPIF 1 < 0 ,即m的取值范围为 SKIPIF 1 < 0 .
10.(2023·全国·高三专题练习)已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 SKIPIF 1 < 0 ,求证:数列 SKIPIF 1 < 0 为等差数列的充要条件是 SKIPIF 1 < 0 .
【答案】证明见解析
【分析】先证明必要性,再证明充分性.
【详解】必要性:数列 SKIPIF 1 < 0 为等差数列,公差为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 满足 SKIPIF 1 < 0 SKIPIF 1 < 0 恒成立,
所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ;
充分性:
因为 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ①, SKIPIF 1 < 0 ②,
①-②得: SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
即 SKIPIF 1 < 0 的奇数项和偶数项均为公差为2的等差数列.
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为等差数列.
综上,数列 SKIPIF 1 < 0 为等差数列的充要条件是 SKIPIF 1 < 0 .
题型二 根据充分必要条件求参数的取值范围
策略方法
1.充分、必要条件的探求方法(与范围有关)
先求使结论成立的充要条件,然后根据“以小推大”的方法确定符合题意的条件.
2.利用充要条件求参数的两个关注点
(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.
(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍.
【典例1】若关于 SKIPIF 1 < 0 的不等式 SKIPIF 1 < 0 成立的充分条件是 SKIPIF 1 < 0 ,则实数 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】D
【分析】由 SKIPIF 1 < 0 化简得到 SKIPIF 1 < 0 ,根据不等式 SKIPIF 1 < 0 成立的充分条件是 SKIPIF 1 < 0 ,列出不等式组,求得答案.
【详解】当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 不成立,故 SKIPIF 1 < 0 ,此时由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
因为不等式 SKIPIF 1 < 0 成立的充分条件是 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
故选:D
【典例2】已知p:“ SKIPIF 1 < 0 ”,q:“ SKIPIF 1 < 0 ”,若p是q的必要不充分条件,则实数m的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】D
【分析】由p、q分别定义集合 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ,用集合法求解.
【详解】由选项可判断出m≥0.
由q:“ SKIPIF 1 < 0 ”可得: SKIPIF 1 < 0 .
由p:“ SKIPIF 1 < 0 ”可得: SKIPIF 1 < 0 .
因为p是q的必要不充分条件,所以 SKIPIF 1 < 0 A.
若m=0时, SKIPIF 1 < 0 , SKIPIF 1 < 0 A不满足,舍去;
若m>0时, SKIPIF 1 < 0 .
要使 SKIPIF 1 < 0 A,只需m>1.
综上所述:实数m的取值范围是 SKIPIF 1 < 0 .
故选:D
【题型训练】
一、单选题
1.(2022秋·河南安阳·高三校联考阶段练习)若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的必要不充分条件,则实数 SKIPIF 1 < 0 ( )
A.3B.2C.1D.0
【答案】B
【分析】解方程 SKIPIF 1 < 0 得 SKIPIF 1 < 0 或-3,再将“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的必要不充分条件转化为 SKIPIF 1 < 0 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,然后根据集合间的包含关系求 SKIPIF 1 < 0 即可.
【详解】解 SKIPIF 1 < 0 的 SKIPIF 1 < 0 或-3,设集合 SKIPIF 1 < 0 ,方程 SKIPIF 1 < 0 的解集为集合 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时,不成立;
故选:B.
2.(2022秋·山东临沂·高三统考期中)已知 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要不充分条件,则( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【分析】由条件 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 范围.根据 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要不充分条件,即可得出 SKIPIF 1 < 0 的取值范围.
【详解】条件 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
条件 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 是 SKIPIF 1 < 0 的必要不充分条件,
SKIPIF 1 < 0 是 SKIPIF 1 < 0 的真子集,
SKIPIF 1 < 0 .
故选:A.
3.(2023·湖南邵阳·统考二模)已知集合 SKIPIF 1 < 0 , SKIPIF 1 < 0 .若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件,则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】B
【分析】若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件,则 SKIPIF 1 < 0 SKIPIF 1 < 0 ,列出不等式组求解即可.
【详解】若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分不必要条件,则 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 .
故选:B.
4.(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式 SKIPIF 1 < 0 对 SKIPIF 1 < 0 恒成立的一个充分不必要条件是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【分析】先由不等式 SKIPIF 1 < 0 对 SKIPIF 1 < 0 恒成立得 SKIPIF 1 < 0 ,再由充分不必要条件的概念即可求解
【详解】由不等式 SKIPIF 1 < 0 对 SKIPIF 1 < 0 恒成立,得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
从选项可知 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的充分不必要条件,
故选:A.
5.(2022·全国·高三专题练习)“当 SKIPIF 1 < 0 时,不等式 SKIPIF 1 < 0 恒成立”的一个必要不充分条件为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】B
【分析】分 SKIPIF 1 < 0 三种情况求出使不等式 SKIPIF 1 < 0 恒成立的 SKIPIF 1 < 0 的取值范围,从而可求出使其成立的一个必要不充分条件
【详解】当 SKIPIF 1 < 0 时,不等式恒成立,
当 SKIPIF 1 < 0 时,不等式 SKIPIF 1 < 0 恒成立,等价于 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,不等式 SKIPIF 1 < 0 恒成立,等价于 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
可知函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上递增,在 SKIPIF 1 < 0 上递减,
所以当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,即 SKIPIF 1 < 0 时,函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 递减,在 SKIPIF 1 < 0 上递增,所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
综上,当 SKIPIF 1 < 0 时,不等式 SKIPIF 1 < 0 恒成立的充要条件为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 是“当 SKIPIF 1 < 0 时,不等式 SKIPIF 1 < 0 恒成立”的一个必要不充分条件,
故选:B
6.(2023·四川南充·四川省南部中学校考模拟预测)已知函数 SKIPIF 1 < 0 ,则函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递增的一个充分不必要条件是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【分析】根据题设条件转化为 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上恒成立,即 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上恒成立,令 SKIPIF 1 < 0 ,利用导数求得 SKIPIF 1 < 0 单调性和最小值,结合题意,即可求解.
【详解】由函数 SKIPIF 1 < 0 ,可得函数 SKIPIF 1 < 0 的定义域为 SKIPIF 1 < 0 ,
且 SKIPIF 1 < 0 ,
因为函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递增,即 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上恒成立,
即 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上恒成立,即 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上恒成立,
令 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 单调递减;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 单调递增,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
结合选项,可得 SKIPIF 1 < 0 时函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递增的一个充分不必要条件.
故选:A.
二、填空题
7.(2021秋·四川南充·高三四川省南充高级中学校考阶段练习)已知p: SKIPIF 1 < 0 ,q: SKIPIF 1 < 0 ,若p是q的必要不充分条件,则a的取值范围是___________.
【答案】 SKIPIF 1 < 0
【分析】利用p是q的必要不充分条件,转化为集合与集合之间的关系求解即可.
【详解】由已知得命题 SKIPIF 1 < 0 为 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 是q的必要不充分条件可知, SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,
设集合 SKIPIF 1 < 0 ,集合 SKIPIF 1 < 0 ,
则集合 SKIPIF 1 < 0 是集合 SKIPIF 1 < 0 的真子集,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,经检验满足题意
则a的取值范围是 SKIPIF 1 < 0 ,
故答案为: SKIPIF 1 < 0 .
8.(2023·上海长宁·统考二模)若“ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分条件,则实数 SKIPIF 1 < 0 的取值范围为___________.
【答案】 SKIPIF 1 < 0
【分析】由充分条件定义直接求解即可.
【详解】 SKIPIF 1 < 0 “ SKIPIF 1 < 0 ”是“ SKIPIF 1 < 0 ”的充分条件, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
即实数 SKIPIF 1 < 0 的取值范围为 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0 .
9.(2022秋·安徽滁州·高三校考阶段练习)已知集合A={x|-1
相关试卷
这是一份新高考数学一轮复习导学案第02讲 常用逻辑用语(2份打包,原卷版+解析版),文件包含新高考一轮复习导学案第02讲常用逻辑用语原卷版doc、新高考一轮复习导学案第02讲常用逻辑用语解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份新高考数学一轮复习讲义第1章 §1.2 常用逻辑用语(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第1章§12常用逻辑用语原卷版doc、新高考数学一轮复习讲义第1章§12常用逻辑用语含解析doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份新高考数学一轮复习讲练测第10章第02讲 排列、组合(十九大题型)(讲义)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲练测第10章第02讲排列组合十九大题型讲义原卷版doc、新高考数学一轮复习讲练测第10章第02讲排列组合十九大题型讲义解析版doc等2份试卷配套教学资源,其中试卷共0页, 欢迎下载使用。