新高考数学一轮复习讲义 第55讲 二项分布、超几何分布与正态分布(2份打包,原卷版+含解析)
展开一、知识点梳理
一、两点分布
1.若随机变量 SKIPIF 1 < 0 服从两点分布,即其分布列为
其中 SKIPIF 1 < 0 ,则称离散型随机变量 SKIPIF 1 < 0 服从参数为 SKIPIF 1 < 0 的两点分布.其中 SKIPIF 1 < 0 称为成功概率.
注意:两点分布的试验结果只有两个可能性,且其概率之和为 SKIPIF 1 < 0 ;
2.两点分布的均值与方差:若随机变量 SKIPIF 1 < 0 服从参数为 SKIPIF 1 < 0 的两点分布,则 SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
二、n次独立重复试验
1.定义
一般地,在相同条件下重复做的 SKIPIF 1 < 0 次试验称为 SKIPIF 1 < 0 次独立重复试验.
注意:独立重复试验的条件:①每次试验在同样条件下进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.
2.特点
(1)每次试验中,事件发生的概率是相同的;
(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例.
三、二项分布
1.定义
一般地,在 SKIPIF 1 < 0 次独立重复试验中,用 SKIPIF 1 < 0 表示事件 SKIPIF 1 < 0 发生的次数,设每次试验中事件 SKIPIF 1 < 0 发生的概率为 SKIPIF 1 < 0 ,不发生的概率 SKIPIF 1 < 0 ,那么事件 SKIPIF 1 < 0 恰好发生 SKIPIF 1 < 0 次的概率是 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…, SKIPIF 1 < 0 )
于是得到 SKIPIF 1 < 0 的分布列
由于表中第二行恰好是二项式展开式
SKIPIF 1 < 0 各对应项的值,称这样的离散型随机变量 SKIPIF 1 < 0 服从参数为 SKIPIF 1 < 0 , SKIPIF 1 < 0 的二项分布,记作 SKIPIF 1 < 0 ,并称 SKIPIF 1 < 0 为成功概率.
注意:由二项分布的定义可以发现,两点分布是一种特殊的二项分布,即 SKIPIF 1 < 0 时的二项分布,所以二项分布可以看成是两点分布的一般形式.
2.二项分布的适用范围及本质
(1)适用范围:
①各次试验中的事件是相互独立的;
②每次试验只有两种结果:事件要么发生,要么不发生;
③随机变量是这 SKIPIF 1 < 0 次独立重复试验中事件发生的次数.
(2)本质:二项分布是放回抽样问题,在每次试验中某一事件发生的概率是相同的.
3.二项分布的期望、方差
若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
四、超几何分布
1.定义
在含有 SKIPIF 1 < 0 件次品的 SKIPIF 1 < 0 件产品中,任取 SKIPIF 1 < 0 件,其中恰有 SKIPIF 1 < 0 件次品,则事件 SKIPIF 1 < 0 发生的概率为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,1,2,…, SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,称分布列为超几何分布列.如果随机变量 SKIPIF 1 < 0 的分布列为超几何分布列,则称随机变量服从超几何分布.
2.超几何分布的适用范围件及本质
(1)适用范围:
①考察对象分两类;
②已知各类对象的个数;
③从中抽取若干个个体,考察某类个体个数 SKIPIF 1 < 0 的概率分布.
(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的.
五、正态曲线
1.定义:我们把函数 SKIPIF 1 < 0 , SKIPIF 1 < 0 (其中 SKIPIF 1 < 0 是样本均值, SKIPIF 1 < 0 是样本标准差)的图象称为正态分布密度曲线,简称正态曲线.正态曲线呈钟形,即中间高,两边低.
2.正态曲线的性质
(1)曲线位于 SKIPIF 1 < 0 轴上方,与 SKIPIF 1 < 0 轴不相交;
(2)曲线是单峰的,它关于直线 SKIPIF 1 < 0 对称;
(3)曲线在 SKIPIF 1 < 0 处达到峰值(最大值) SKIPIF 1 < 0 ;
(4)曲线与 SKIPIF 1 < 0 轴之间的面积为1;
(5)当 SKIPIF 1 < 0 一定时,曲线的位置由 SKIPIF 1 < 0 确定,曲线随着 SKIPIF 1 < 0 的变化而沿 SKIPIF 1 < 0 轴平移,如图甲所示:
(6)当 SKIPIF 1 < 0 一定时,曲线的形状由 SKIPIF 1 < 0 确定. SKIPIF 1 < 0 越小,曲线越“高瘦”,表示总体的分布越集中; SKIPIF 1 < 0 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示::
甲 乙
六、正态分布
1.定义
随机变量 SKIPIF 1 < 0 落在区间 SKIPIF 1 < 0 的概率为 SKIPIF 1 < 0 ,即由正态曲线,过点 SKIPIF 1 < 0 和点 SKIPIF 1 < 0 的两条 SKIPIF 1 < 0 轴的垂线,及 SKIPIF 1 < 0 轴所围成的平面图形的面积,如下图中阴影部分所示,就是 SKIPIF 1 < 0 落在区间 SKIPIF 1 < 0 的概率的近似值.
一般地,如果对于任何实数 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,随机变量 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,则称随机变量 SKIPIF 1 < 0 服从正态分布.正态分布完全由参数 SKIPIF 1 < 0 , SKIPIF 1 < 0 确定,因此正态分布常记作 SKIPIF 1 < 0 .如果随机变量 SKIPIF 1 < 0 服从正态分布,则记为 SKIPIF 1 < 0 .
其中,参数 SKIPIF 1 < 0 是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计; SKIPIF 1 < 0 是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.
2. SKIPIF 1 < 0 原则
若 SKIPIF 1 < 0 ,则对于任意的实数 SKIPIF 1 < 0 , SKIPIF 1 < 0 为下图中阴影部分的面积,对于固定的 SKIPIF 1 < 0 和 SKIPIF 1 < 0 而言,该面积随着 SKIPIF 1 < 0 的减小而变大.这说明 SKIPIF 1 < 0 越小, SKIPIF 1 < 0 落在区间 SKIPIF 1 < 0 的概率越大,即 SKIPIF 1 < 0 集中在 SKIPIF 1 < 0 周围的概率越大
特别地,有 SKIPIF 1 < 0 ; SKIPIF 1 < 0 ; SKIPIF 1 < 0 SKIPIF 1 < 0 .
由 SKIPIF 1 < 0 SKIPIF 1 < 0 ,知正态总体几乎总取值于区间 SKIPIF 1 < 0 之内.而在此区间以外取值的概率只有 SKIPIF 1 < 0 ,通常认为这种情况在一次试验中几乎不可能发生,即为小概率事件.在实际应用中,通常认为服从于正态分布 SKIPIF 1 < 0 的随机变量 SKIPIF 1 < 0 只取 SKIPIF 1 < 0 之间的值,并简称之为 SKIPIF 1 < 0 原则.
【常用结论】
①超几何分布和二项分布的区别
(1)超几何分布需要知道总体的容量,而二项分布不需要;
(2)超几何分布是“不放回”抽取,在每次试验中某一事件发生的概率是不相同的;
而二项分布是“有放回”抽取(独立重复),在每次试验中某一事件发生的概率是相同的.
②求正态变量 SKIPIF 1 < 0 在某区间内取值的概率的基本方法
(1)根据题目中给出的条件确定 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的值.
(2)将待求问题向 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 这三个区间进行转化;
(3)利用 SKIPIF 1 < 0 在上述区间的概率、正态曲线的对称性和曲线与x轴之间的面积为1求出最后结果.
二、题型分类精讲
题型一 两点分布
策略方法
两点分布的试验结果只有两个可能性,且其概率之和为 SKIPIF 1 < 0
【典例1】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.顾客甲从10张奖券中任意抽取1张,求中奖次数X的分布列.
【题型训练】
一、单选题
1.已知随机变量 SKIPIF 1 < 0 服从两点分布,且 SKIPIF 1 < 0 .设 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 等于( )
A.0.6B.0.3C.0.2D.0.4
2.设某项试验的成功率是失败率的3倍,用随机变量X去描述1次试验的成功次数,则 SKIPIF 1 < 0 ( )
A.0B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.两点分布也叫 SKIPIF 1 < 0 分布,已知随机变量 SKIPIF 1 < 0 服从参数为 SKIPIF 1 < 0 的两点分布,则下列选项中不正确的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
4.已知随机变量 SKIPIF 1 < 0 服从两点分布, SKIPIF 1 < 0 ,则其成功概率为( )
A.0B.1C.0.3D. SKIPIF 1 < 0
二、多选题
5.若随机变量X服从两点分布,其中 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分别为随机变量X的均值与方差,则下列结论正确的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.下列选项中的随机变量 SKIPIF 1 < 0 服从两点分布的是( )
A.抛掷一枚均匀的骰子,所得点数为 SKIPIF 1 < 0
B.某运动员罚球命中的概率为0.8,命中得1分,不中得0分, SKIPIF 1 < 0 为罚球一次的得分
C.从装有大小完全相同的5个红球、3个白球的袋中任取1个球, SKIPIF 1 < 0
D.从含有3件次品的100件产品中随机抽取一件, SKIPIF 1 < 0 为抽到的次品件数
三、填空题
7.已知随机变量X的取值为0,1,若 SKIPIF 1 < 0 ,则X的均值为 .
8.已知随机变量X服从两点分布,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 .
9.已知随机变量 SKIPIF 1 < 0 服从两点分布,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 .
10.已知离散型随机变量X服从两点分布,且 SKIPIF 1 < 0 ,则随机变量X的方差为 .
四、解答题
11.甲击中目标的概率是p,如果击中,得1分,否则得0分.用X表示甲的得分,计算随机变量X的数学期望.
12.从装有 SKIPIF 1 < 0 个白球和 SKIPIF 1 < 0 个红球的口袋中任取 SKIPIF 1 < 0 个球,用 SKIPIF 1 < 0 表示“取到的白球个数”,则 SKIPIF 1 < 0 的取值为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,求随机变量 SKIPIF 1 < 0 的概率分布.
13.一个袋中有除颜色外其余完全相同的3个白球和4个红球.
(1)从袋中任意摸出一球,用0表示摸出白球,用1表示摸出红球,则有 SKIPIF 1 < 0 求X的分布列;
(2)从袋中任意摸出两个球,用“ SKIPIF 1 < 0 0”表示两个球全是白球,用“ SKIPIF 1 < 0 ”表示两个球不全是白球,求Y的分布列.
14.篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为 SKIPIF 1 < 0 .
(1)若投篮1次得分记为 SKIPIF 1 < 0 ,求方差 SKIPIF 1 < 0 的最大值;
(2)当(1)中 SKIPIF 1 < 0 取最大值时,求运动员甲投5次篮得分为4分的概率.
15.现有 SKIPIF 1 < 0 人要通过化验来确定是否患有某种疾病,化验结果阳性视为患有该疾病.化验方案 SKIPIF 1 < 0 :先将这 SKIPIF 1 < 0 人化验样本混在一起化验一次,若呈阳性,则还要对每个人再做一次化验;否则化验结束.已知这 SKIPIF 1 < 0 人未患该疾病的概率均为 SKIPIF 1 < 0 ,是否患有该疾病相互独立.
(1)按照方案 SKIPIF 1 < 0 化验,求这 SKIPIF 1 < 0 人的总化验次数 SKIPIF 1 < 0 的分布列;
(2)化验方案 SKIPIF 1 < 0 :先将这 SKIPIF 1 < 0 人随机分成两组,每组 SKIPIF 1 < 0 人,将每组的 SKIPIF 1 < 0 人的样本混在一起化验一次,若呈阳性,则还需要对这 SKIPIF 1 < 0 人再各做一次化验;否则化验结束.若每种方案每次化验的费用都相同,且 SKIPIF 1 < 0 ,问方案 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中哪个化验总费用的数学期望更小?
题型二 超几何分布
策略方法
超几何分布的实际应用问题,主要是指与两类不同元素的抽取问题的概率计算和离散型随机变量的分布列、期望及方差的求解等有关的问题.解题的关键如下:
①定型:根据已知建立相应的概率模型,并确定离散型随机变量服从的分布的类型,特别要区分超几何分布与二项分布.
②定参:确定超几何分布中的三个参数N,M,n.即确定试验中包含的元素的个数、特殊元素的个数及要抽取的元素个数.
③列表:根据离散型随机变量的取值及其对应的概率列出分布列.
④求值:根据离散型随机变量的期望和方差公式,代入相应数值求值.
【典例1】一个袋中装有5个形状大小完全相同的小球,其中红球有2个,白球有3个,从中任意取出3个球.
(1)求取出的3个球恰有一个红球的概率;
(2)若随机变量X表示取得红球的个数,求随机变量X的分布列.
【题型训练】
一、单选题
1.已知8名学生中有5名男生,从中选出4名代表,记选出的代表中男生人数为X,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至多有1个阴数的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.某党支部有10名党员,7男3女,从中选取2人做汇报演出,若X表示选中的女党员数,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D.1
4.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
5.某竞赛小组共有13人,其中有6名女生,现从该竞赛小组中任选5人参加一项活动,用 SKIPIF 1 < 0 表示这5人中女生的人数,则下列概率中等于 SKIPIF 1 < 0 的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.某学校有一个体育运动社团,该社团中会打篮球且不会踢足球的有3人,篮球、足球都会的有2人,从该社团中任取2人,设 SKIPIF 1 < 0 为选出的人中篮球、足球都会的人数,若 SKIPIF 1 < 0 ,则该社团的人数为( )
A.5B.6C.7D.10
二、多选题
7.某单位推出了 SKIPIF 1 < 0 道有关二十大的测试题供学习者学习和测试,乙能答对其中的 SKIPIF 1 < 0 道题,规定每次测试都是从这 SKIPIF 1 < 0 道题中随机抽出 SKIPIF 1 < 0 道,答对一题加 SKIPIF 1 < 0 分,答错一题或不答减 SKIPIF 1 < 0 分,最终得分最低为 SKIPIF 1 < 0 分,则下列说法正确的是( )
A.乙得 SKIPIF 1 < 0 分的概率是 SKIPIF 1 < 0 B.乙得 SKIPIF 1 < 0 分的概率是 SKIPIF 1 < 0
C.乙得 SKIPIF 1 < 0 分的概率是 SKIPIF 1 < 0 D.乙得 SKIPIF 1 < 0 分的概率是 SKIPIF 1 < 0
8.在一个袋中装有质地、大小均一样的6个黑球,4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X,则下列结论正确的是( )
A. SKIPIF 1 < 0
B.随机变量X服从二项分布
C.随机变量X服从超几何分布
D. SKIPIF 1 < 0
9.一个袋子中装有除颜色外完全相同的10个球,其中有6个黑球,4个白球,现从中任取4个球,记随机变量 SKIPIF 1 < 0 为取出白球的个数,随机变量 SKIPIF 1 < 0 为取出黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量 SKIPIF 1 < 0 为取出4个球的总得分,则下列结论中正确的是( )
A. SKIPIF 1 < 0 服从超几何分布B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
三、填空题
10.从一箱脐橙(共10个,其中7个是大果,3个是中果)中任选3个,则恰有2个中果的概率为 .
11.莫高窟坐落在甘肃的敦煌,它是世界上现存规模最大、内容最丰富的佛教艺术胜地,每年都会吸引来自世界各地的游客参观旅游.已知购买莫高窟正常参观套票可以参观8个开放洞窟,在这8个洞窟中莫高窟九层楼96号窟、莫高窟三层楼16号窟、藏经洞17号窟被誉为最值得参观的洞窟.根据疫情防控的需要,莫高窟改为极速参观模式,游客需从套票包含的开放洞窟中随机选择4个进行参观,所有选择中至少包含2个最值得参观洞窟的概率是 .
12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.则该商家拒收这批产品的概率是 .
13.一个袋中共有 SKIPIF 1 < 0 个大小相同的黑球、白球和红球,已知从袋中任意摸出 SKIPIF 1 < 0 个球,得到黑球的概率是 SKIPIF 1 < 0 ;从袋中任意摸出 SKIPIF 1 < 0 个球,至少得到 SKIPIF 1 < 0 个白球的概率是 SKIPIF 1 < 0 ,则白球的个数为 .
14.为庆祝第19届亚运会在我国杭州举行,杭州某中学举办了一次“亚运知识知多少”的知识竞赛.参赛选手从7道题(4道多选题,3道单选题)中随机抽题进行作答,若某选手先随机抽取2道题,再随机抽取1道题,则最后抽取到的题为多选题的概率为 .
15.在高考志愿模拟填报实验中,共有9个专业可供学生甲填报,其中学生甲感兴趣的专业有3个.若在实验中,学生甲随机选择3个专业进行填报,则填报的专业中至少有1个是学生甲感兴趣的概率为 .
四、解答题
16.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚,扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,某市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共分3批次进行,每次支教需要同时派送2名教师,且每次派送人员均从这5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验.
(1)求5名优秀教师中的“甲”,在这3批次支教活动中恰有两次被抽选到的概率;
(2)求第一次抽取到无支教经验的教师人数 SKIPIF 1 < 0 的分布列;
17.为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有 SKIPIF 1 < 0 和 SKIPIF 1 < 0 两类试题,每类试题各10题,其中每答对1道 SKIPIF 1 < 0 类试题得10分;每答对1道 SKIPIF 1 < 0 类试题得20分,答错都不得分.每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知某同学 SKIPIF 1 < 0 类试题中有7道题能答对,而他答对各道 SKIPIF 1 < 0 类试题的概率均为 SKIPIF 1 < 0 .
(1)若该同学只抽取3道 SKIPIF 1 < 0 类试题作答,设 SKIPIF 1 < 0 表示该同学答这3道试题的总得分,求 SKIPIF 1 < 0 的分布和期望;
(2)若该同学在 SKIPIF 1 < 0 类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率.
18.某市移动公司为了提高服务质量,决定对使用 SKIPIF 1 < 0 两种套餐的集团用户进行调查,准备从本市 SKIPIF 1 < 0 个人数超过1000的大集团和3个人数低于200的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是大集团的概率为 SKIPIF 1 < 0 .
(1)在取出的2个集团是同一类集团的情况下,求全为小集团的概率;
(2)若一次抽取3个集团,假设取出大集团的个数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和数学期望.
19.随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,按照 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分组,并整理得到如下频率分布直方图:
根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级:
(1)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(2)从这两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望 SKIPIF 1 < 0 ;
(3)试判断选出的这两组学生每天学习“中华诗词”时间的平均值 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的大小,及方差 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的大小.(只需写出结论)
20.一座城市的夜间经济不仅有助于拉动本地居民内需,还能延长外地游客、商务办公者等的留存时间,带动当地经济发展,是衡量一座城市生活质量、消费水平、投资环境及文化发展活力的重要指标.数据显示,近年来中国各地政府对夜间经济的扶持力度加大,夜间经济的市场发展规模保持稳定增长,下表为2017—2022年中国夜间经济的市场发展规模(单位:万亿元),设2017—2022年对应的年份代码依次为1~6.
(1)已知可用函数模型 SKIPIF 1 < 0 拟合y与x的关系,请建立y关于x的回归方程(a,b的值精确到0.01);
(2)某传媒公司发布的2023年中国夜间经济城市发展指数排行榜前10名中,吸引力超过90分的有4个,从这10个城市中随机抽取5个,记吸引力超过90分的城市数量为X,求X的分布列与数学期望.
参考数据:
其中 SKIPIF 1 < 0 .
参考公式:对于一组数据 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…, SKIPIF 1 < 0 ,其回归直线 SKIPIF 1 < 0 的斜率和截距的最小二乘法估计分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
21.2023年9月23日第19届亚运会在杭州开幕,本届亚运会共设40个竞赛大项,包括31个奥运项目和9个非奥运项目.为研究不同性别学生对杭州亚运会项目的了解情况,某学校进行了一次抽样调查,分别抽取男生和女生各50名作为样本,设事件 SKIPIF 1 < 0 “了解亚运会项目”, SKIPIF 1 < 0 “学生为女生”,据统计 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
附: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)根据已知条件,填写下列2×2列联表,并依据 SKIPIF 1 < 0 的独立性检验,能否认为该校学生对亚运会项目的了解情况与性别有关?
(2)现从该校了解亚运会项目的学生中,采用分层随机抽样的方法随机抽取9名学生,再从这9名学生中随机抽取4人,设抽取的4人中男生的人数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和数学期望.
22.ChatGPT是由人工智能研究实验室OpenAI于2022年11月30日发布的一款全新聊天机器人棋型,它能够通过学习和理解人类的语言来进行对话,ChatGPT的开发主要采用PLHF(人类反馈强化学习)技术.在测试ChatGPT时,如果输入的问题没有语法错误,则ChatGPT的回答被采纳的概率为 SKIPIF 1 < 0 ,当出现语法错误时,ChatGPT的回答被采纳的概率为 SKIPIF 1 < 0 .
(1)在某次测试中输入了7个问题,ChatGPT的回答有5个被采纳.现从这7个问题中抽取3个,以 SKIPIF 1 < 0 表示这抽取的问题中回答被采纳的问题个数,求 SKIPIF 1 < 0 的分布列和数学期望;
(2)已知输入的问题出现语法错误的概率为 SKIPIF 1 < 0 ,
(i)求ChatGPT的回答被采纳的概率;
(ii)若已知ChatGPT的回答被采纳,求该问题的输入没有语法错误的概率.
23.某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有 SKIPIF 1 < 0 个红球,则分得 SKIPIF 1 < 0 个月饼;若摸出的球中有黄球,则需要表演一个节目.
(1)求一学生既分得月饼又要表演节目的概率;
(2)求每位学生分得月饼数的概率分布和数学期望.
24.有3男、2女共5位学生,从中随机选取3人参加创建文明城区宣传活动,用随机变量X、Y分别表示被选中的男生、女生人数.
(1)写出 SKIPIF 1 < 0 的分布,并求 SKIPIF 1 < 0 的值;
(2)求 SKIPIF 1 < 0 的值.
题型三 二项分布
策略方法
二项分布的实际应用问题,主要是指与独立重复试验中的概率计算和离散型随机变量的分布列、期望及方差的求解等有关的问题.解题的关键如下:
①定型,“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.
②定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.
③列表,根据离散型随机变量的取值及其对应的概率,列出分布列.
④求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.
相关公式:已知X~B(n,p),则P(X=k)=Ceq \\al(k,n)pk(1-p)n-k(k=0,1,2,…,n),E(X)=np,D(X)=np(1-p).
【典例1】.某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列及数学期望.
【典例2】随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制订学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高 SKIPIF 1 < 0 (单位:cm)服从正态分布 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,试估计该市身高高于180cm的高中男生人数.
【题型训练】
一、单选题
1.已知随机变量 SKIPIF 1 < 0 服从二项分布 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 等于( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.“锦里开芳宴,兰缸艳早年.”元宵节是中国非常重要的传统节日,某班级准备进行“元宵福气到”抽奖活动福袋中装有标号分别为1, 2, 3, 4, 5的五个相同小球,从袋中一次性摸出三个小球,若号码之和是3的倍数,则获奖.若有5名同学参与此次活动,则恰好3人获奖的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.某人参加一次考试,共有4道试题,至少答对其中3道试题才能合格.若他答每道题的正确率均为0.5,并且答每道题之间相互独立,则他能合格的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
4.某射手每次射击击中目标的概率是0.6,且各次射击的结果互不影响,则该射手射击30次恰有18次击中目标的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
5.已知每门大炮击中目标的概率都是0.5,现有10门大炮同时对某一目标各射击一次.记恰好击中目标3次的概率为A;若击中目标记2分,记10门大炮总得分的期望值为B,则A,B的值分别为( )
A. SKIPIF 1 < 0 ,5B. SKIPIF 1 < 0 ,10C. SKIPIF 1 < 0 ,5D. SKIPIF 1 < 0 ,10
6.技术员小李对自己培育的新品种蔬菜种子进行发芽率的试验,每个试验组3个坑,每个坑种1粒种子.经过大量试验,每个试验组没有发芽的坑数平均数为 SKIPIF 1 < 0 ,则每粒种子发芽的概率 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
7.数轴上一个质点在随机外力的作用下,从原点0出发,每隔1秒向左或向右移动一个单位,已知向右移动的概率为 SKIPIF 1 < 0 ,向左移动的概率为 SKIPIF 1 < 0 ,共移动6次,则质点位于2的位置的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
8.琴棋书画是中国古代四大艺术,源远流长,琴棋书画之棋,指的就是围棋.已知甲、乙两人进行五局围棋比赛,甲每局获胜的概率都是 SKIPIF 1 < 0 ,且各局的胜负相互独立,设甲获胜的局数为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.2
9.设随机变量 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
10.某次数学测验共有10道单选题(四个选项中只有一项是正确的),某同学全都不会做,记该同学做对的题目数为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 服从二项分布 SKIPIF 1 < 0 ,则以下说法错误的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
11.甲、乙两人进行比赛,假设每局甲胜的概率为0.6,乙胜的概率为0.4,且各局比赛互不影响.若采取“5局3胜制”,则概率最大的比赛结果是( )
A.乙 SKIPIF 1 < 0 赢得比赛B.甲 SKIPIF 1 < 0 赢得比赛
C.甲 SKIPIF 1 < 0 赢得比赛D.甲 SKIPIF 1 < 0 赢得比赛
12.排球比赛实行“五局三胜制”,根据此前的若干次比赛数据统计可知,在甲、乙两队的比赛中,每场比赛甲队获胜的概率为 SKIPIF 1 < 0 ,乙队获胜的概率为 SKIPIF 1 < 0 ,则在这场“五局三胜制”的排球赛中乙队获胜的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
13.某人在19次射击中击中目标的次数为X,若 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 最大,则 SKIPIF 1 < 0 ( )
A.14或15B.15C.15或16D.16
14.为了远程性和安全性上与美国波音747竞争,欧洲空中客车公司设计并制造了 SKIPIF 1 < 0 ,它是一种有四台发动机的远程双过道宽体客机,取代只有两台发动机的 SKIPIF 1 < 0 ,假设每一架飞机的引擎在飞行中出现故障率为 SKIPIF 1 < 0 ,且各引擎是否有故障是独立的,已知 SKIPIF 1 < 0 飞机至少有3个引擎正常运行,飞机就可成功飞行; SKIPIF 1 < 0 飞机需要2个引擎全部正常运行,飞机才能成功飞行.若要使 SKIPIF 1 < 0 飞机比 SKIPIF 1 < 0 飞机更安全,则飞机引擎的故障率应控制的范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
15.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为 SKIPIF 1 < 0 ,各局比赛结果相互独立且没有平局,则在甲获得冠军的情况下,比赛进行了三局的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
16.某同学进行一项投篮测试,若该同学连续三次投篮成功,则通过测试;若出现连续两次失败,则不通过测试.已知该同学每次投篮的成功率为 SKIPIF 1 < 0 ,则该同学通过测试的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
17.为了发展农村经济,某乡镇政府根据当地的地理优势计划从A,B,C三种经济作物中选取两种进行种植推广.通过调研得到当地村民愿意种植A,B,C的概率均分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,若从当地村民中随机选取4人进行交流,则其中至少有2人愿意种植A,且至少有1人愿意种植B的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
18.某学生进行投篮训练,采取积分制,有7次投篮机会,投中一次得1分,不中得0分,若连续投中两次则额外加1分,连续投中三次额外加2分,以此类推,连续投中七次额外加6分,假设该学生每次投中的概率是 SKIPIF 1 < 0 ,且每次投中之间相互独立,则该学生在此次训练中恰好得7分的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
二、多选题
19.一个盒子里放着大小、形状完全相同的1个黑球、2个白球、2个红球,现不放回地随机从盒子中摸球,每次取一个,直到取到黑球为止,记摸到白球的个数为随机变量 SKIPIF 1 < 0 ,则下列说法正确的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
20.若袋子中有2个白球,3个黑球(球除了颜色不同,没有其他任何区别),现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X,则( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
21.某区四所高中各自组建了排球队(分别记为“甲队”“乙队”“丙队”“丁队”)进行单循环比赛(即每支球队都要跟其他各支球队进行一场比赛),最后按各队的积分排列名次,积分规则为每队胜一场得3分,平一场得1分,负一场得0分.若每场比赛中两队胜、平、负的概率都为 SKIPIF 1 < 0 ,则在比赛结束时( )
A.甲队积分为9分的概率为 SKIPIF 1 < 0 B.四支球队的积分总和可能为15分
C.甲队胜3场且乙队胜1场的概率为 SKIPIF 1 < 0 D.甲队输一场且积分超过其余每支球队积分的概率为 SKIPIF 1 < 0
22.一个质点在随机外力的作用下,从原点0出发,每隔 SKIPIF 1 < 0 向左或向右移动一个单位,向左移动的概率为 SKIPIF 1 < 0 ,向右移动的概率为 SKIPIF 1 < 0 .则下列结论正确的有( )
A.第八次移动后位于原点0的概率为 SKIPIF 1 < 0
B.第六次移动后位于4的概率为 SKIPIF 1 < 0
C.第一次移动后位于-1且第五次移动后位于1的概率为 SKIPIF 1 < 0
D.已知第二次移动后位于2,则第六次移动后位于4的概率为 SKIPIF 1 < 0
三、填空题
23.设随机变量 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
24.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为 SKIPIF 1 < 0 ,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X的期望是 .
25.将一枚质地均匀的硬币重复抛掷10次,恰好出现3次正面朝上的概率为 .
26.若随机变量 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
27.甲、乙两名运动员进行羽毛球比赛,已知每局比赛甲胜的概率为 SKIPIF 1 < 0 ,乙胜的概率为 SKIPIF 1 < 0 ,且各局比赛结果相互独立.当比赛采取 SKIPIF 1 < 0 局 SKIPIF 1 < 0 胜制时,甲用4局赢得比赛的概率为 SKIPIF 1 < 0 .现甲,乙进行 SKIPIF 1 < 0 局比赛,设甲胜的局数为 SKIPIF 1 < 0 则 SKIPIF 1 < 0 .
28.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 .
29.甲与乙进行投篮游戏,在每局游戏中两人分别投篮两次,每局投进的次数之和不少于 SKIPIF 1 < 0 次则胜利,已知甲乙两名队员投篮相互独立且投进篮球的概率均为 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 为甲乙两名队员获得胜利的局数,若游戏的局数是 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
30.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图所示的为一幅唐朝的投壶图,假设甲、乙是唐朝的两位投壶游戏参与者,且甲、乙每次投壶投中的概率分别为 SKIPIF 1 < 0 ,每人每次投壶相互独立.若约定甲投壶2次,乙投壶3次,投中次数多者胜,则乙最后获胜的概率为 .
四、解答题
31.某闯关游戏共设置4道题,参加比赛的选手从第1题开始答题,一旦答错则停止答题,否则继续,直到答完所有题目.设选手甲答对第1题的概率为 SKIPIF 1 < 0 ,甲答对题序为 SKIPIF 1 < 0 的题目的概率 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,各题回答正确与否相互之间没有影响.
(1)若甲已经答对了前3题,求甲答对第4题的概率;
(2)求甲停止答题时答对题目数量 SKIPIF 1 < 0 的分布列与数学期望.
32.某中医研究所研制了一种治疗A疾病的中药,为了解其对A疾病的作用,要进行双盲实验.把60名患有A疾病的志愿者随机平均分成两组,甲组正常使用这种中药,乙组用安慰剂代替中药,全部疗期后,统计甲、乙两组的康复人数分别为20和5.
(1)根据所给数据,完成下面 SKIPIF 1 < 0 列联表,并判断是否有 SKIPIF 1 < 0 的把握认为使用这种中药与A疾病康复有关联?
(2)若将乙组未用药(用安慰剂代替中药)而康复的频率视为这种疾病的自愈概率,现从患有A疾病的人群中随机抽取3人,记其中能自愈的人数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和数学期望.
附表:
附: SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 .
注:双盲实验:是指在实验过程中,测验者与被测验者都不知道被测者所属的组别,(实验组或对照组),分析者在分析资料时,通常也不知道正在分析的资料属于哪一组.旨在消除可能出现在实验者和参与者意识当中的主观偏差和介入偏好.安慰剂:是指没有药物治疗作用,外形与真药相像的片、丸、针剂.
33.某中学为了响应国家双减政策,开展了校园娱乐活动.在一次五子棋比赛活动中,甲、乙两位同学每赛一局,胜者得1分,对方得0分,没有平局.规定当一人比另一人多得5分或进行完10局比赛时,活动结束.假设甲、乙两位同学获胜的概率都为 SKIPIF 1 < 0 ,且两人各局胜负分别相互独立.已知现在已经进行了3局比赛,甲得2分,乙得1分,在此基础上继续比赛.
(1)只有当一人比另一人多得5分时,得分高者才能获得比赛奖品,求甲获得比赛奖品的概率;
(2)设X表示该活动结束时所进行的比赛的总轮数,求X的分布列及数学期望.
34.某高校设计了一个实验学科的考查方案:考生从 SKIPIF 1 < 0 道备选题中一次性随机抽取 SKIPIF 1 < 0 题,按照题目要求独立完成全部实验操作,规定至少正确完成其中 SKIPIF 1 < 0 题才可提交通过.已知 SKIPIF 1 < 0 道备选题中考生甲有 SKIPIF 1 < 0 道题能正确完成, SKIPIF 1 < 0 道题不能完成;考生乙每题正确完成的概率都是 SKIPIF 1 < 0 ,且每题正确完成与否互不影响.
(1)求甲考生正确完成实验操作的题数的分布列,并计算均值;
(2)试从甲、乙两位考生正确完成实验操作的题数的均值、方差及至少正确完成 SKIPIF 1 < 0 题的概率方面比较两位考生的实验操作能力.
35.为了检查工厂生产的某产品的质量指标,随机抽取了部分产品进行检测,所得数据统计如下图所示.
(1)求 SKIPIF 1 < 0 的值以及这批产品的优质率:(注:产品质量指标达到130及以上为优质品);
(2)若按照分层的方法从质量指标值在 SKIPIF 1 < 0 的产品中随机抽取 SKIPIF 1 < 0 件,再从这 SKIPIF 1 < 0 件中随机抽取 SKIPIF 1 < 0 件,求至少有一件的指标值在 SKIPIF 1 < 0 的概率;
(3)以本次抽检的频率作为概率,从工厂生产的所有产品中随机抽出 SKIPIF 1 < 0 件,记这 SKIPIF 1 < 0 件中优质产品的件数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列与数学期望.
36.学校举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是 SKIPIF 1 < 0 .
(1)求小明在投篮过程中直到第三次才投中的概率;
(2)求小明在4次投篮后的总得分ξ的分布列
37.为了引导人民强健体魄,某市组织了一系列活动,其中乒乓球比赛的冠军由A,B两队争夺,已知A,B两队之间的比赛采用5局3胜制,且本次比赛共设有3000元奖金,奖金分配规则如下:①若比赛进行3局即可决定胜负,则赢方获得全部奖金,输方没有奖金;②若比赛进行4局即可决定胜负,则赢方获得90%的奖金,输方获得10%的奖金;③若比赛打满5局才决定胜负,则赢方获得80%的奖金,输方获得20%的奖金.已知每局比赛A队,B队赢的概率分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且每局比赛的结果相互独立.
(1)若比赛进行4局即可决定胜负,则A队赢得比赛的概率为多少?
(2)求A队获得奖金金额X的分布列及数学期望.
38.某电商车间生产了一批电子元件,为了检测元件是否合格,质检员设计了如图,甲所示的电路.于是他在一批产品中随机抽取了电子元件 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,安装在如图甲所示的电路中,已知元件 SKIPIF 1 < 0 的合格率都为 SKIPIF 1 < 0 ,元件 SKIPIF 1 < 0 的合格率都为 SKIPIF 1 < 0 .
(1)质检员在某次检测中,发现小灯泡亮了,他认为这三个电子元件都是合格的,求该质检员犯错误的概率;
(2)经反复测验,质检员把一些电子元件 SKIPIF 1 < 0 , SKIPIF 1 < 0 接入了图乙的电路中,记该电路中小灯泡亮的个数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列.
39.树人中学某班同学看到有关产品抽检的资料后,自己设计了一个模拟抽检方案的摸球实验.在一个不透明的箱子中放入10个小球代表从一批产品中抽取出的样本(小球除颜色外均相同),其中有 SKIPIF 1 < 0 个红球( SKIPIF 1 < 0 , SKIPIF 1 < 0 ),代表合格品,其余为黑球,代表不合格品,从箱中逐一摸出 SKIPIF 1 < 0 个小球,方案一为不放回摸取,方案二为放回后再摸下一个,规定:若摸出的 SKIPIF 1 < 0 个小球中有黑色球,则该批产品未通过抽检.
(1)若采用方案一, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求该批产品未通过抽检的概率;
(2)(ⅰ)若 SKIPIF 1 < 0 ,试比较方案一和方案二,哪个方案使得该批产品通过抽检的概率大?并判断通过抽检的概率能否大于 SKIPIF 1 < 0 ?并说明理由.
(ⅱ)若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,现采用(ⅰ)中概率最大的方案,设在一次实验中抽得的红球为 SKIPIF 1 < 0 个,求 SKIPIF 1 < 0 的分布列及数学期望.
40.某校设计了一个实验学科的实验考查方案;考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中2题便可通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是 SKIPIF 1 < 0 ,且每题正确完成与否互不影响,求:
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试用统计知识分析比较两考生的实验操作能力.
题型四 正态分布
策略方法 关于正态总体在某个区间内取值的概率求法
(1)熟记P(μ-σ
(1)若甲已经答对了前3题,求甲答对第4题的概率;
(2)求甲停止答题时答对题目数量 SKIPIF 1 < 0 的分布列与数学期望.
【题型训练】
一、单选题
1.已知随机变量 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的值约为( )
A.0.0214B.0.1358C.0.8185D.0.9759
2.若随机变量 SKIPIF 1 < 0 ,则下列选项错误的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.某市教学质量检测中,甲、乙、丙三科考试成绩的正态分布图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),下列说法中正确的是( )
A.甲科总体的标准差最小B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中D.甲、乙、丙总体的平均数不相同
4.设随机变量 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A.0.75B.0.5C.0.3D.0.25
5.在日常生活中,许多现象都服从正态分布.若 SKIPIF 1 < 0 ,记 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,经统计,某零件的尺寸大小 SKIPIF 1 < 0 (单位:dm)从正态分布 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.某学校共 SKIPIF 1 < 0 人参加数学测验,考试成绩 SKIPIF 1 < 0 近似服从正态分布 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则估计成绩不及格(在 SKIPIF 1 < 0 分以下)的学生人数为( )
A. SKIPIF 1 < 0 人B. SKIPIF 1 < 0 人C. SKIPIF 1 < 0 人D. SKIPIF 1 < 0 人
7.某校高三年级有500人,一次数学考试的成绩X服从正态分布 SKIPIF 1 < 0 .估计该校高三年级本次考试学生数学成绩在120分以上的有( )
参考数据:若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
A.75人B.77人C.79人D.81人
8.甲、乙两地举行数学联考,统计发现:甲地学生的成绩 SKIPIF 1 < 0 ,乙地学生的成绩 SKIPIF 1 < 0 .下图分别是其正态分布的密度曲线,则( )
(若随机变量 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 )
A.甲地数学的平均成绩比乙地的高B.甲地数学成绩的离散程度比乙地的小
C. SKIPIF 1 < 0 D.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
9.已知随机变量 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
10.“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究 SKIPIF 1 < 0 应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全,农业科学发展和世界粮食供给做出了杰出贡献 SKIPIF 1 < 0 某杂交水稻种植研究所调查某地水稻的株高,得出株高(单位: SKIPIF 1 < 0 )服从正态分布,其密度曲线函数为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则下列说法错误的是( )
A.该地水稻的平均株高为 SKIPIF 1 < 0
B.该地水稻株高的方差为100
C.随机测量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率小
D.随机测量一株水稻,其株高在 SKIPIF 1 < 0 和在 SKIPIF 1 < 0 (单位:cm)的概率一样大
11.已知某工厂生产零件的尺寸指标 SKIPIF 1 < 0 ,单位为 SKIPIF 1 < 0 .该厂每天生产的零件尺寸在 SKIPIF 1 < 0 的数量为818600,则可以估计该厂每天生产的零件尺寸在15.15以上的数量为( )
参考数据:若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
A.1587B.2275C.2700D.1350
二、多选题
12.已知随机变量X服从正态分布 SKIPIF 1 < 0 ,则下列选项正确的是(参考数值:随机变量 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,则( )
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
13.已知某果园的每棵果树生长的果实个数为X,且X服从正态分布 SKIPIF 1 < 0 ,X小于70的概率为0.2,从该果园随机选取10棵果树,其中果实个数在 SKIPIF 1 < 0 的果树棵数记作随机变量Y,则下列说法正确的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
三、填空题
14.某地区调研考试数学成绩 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则成绩在 SKIPIF 1 < 0 的概率为 .
15.某校期末统考数学成绩服从正态分布 SKIPIF 1 < 0 .按 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的比例将考试成绩划为 SKIPIF 1 < 0 四个等级,其中分数大于或等于83分的为 SKIPIF 1 < 0 等级,则 SKIPIF 1 < 0 等级的分数应为 .(用区间表示)
16.某种红糖的袋装质量 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,随机抽取5000袋,则袋装质量在区间 SKIPIF 1 < 0 的约有 袋.(质量单位: SKIPIF 1 < 0 )
附:若随机变量 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
17.已知随机变量X服从正态分布 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
18.已知 SKIPIF 1 < 0 ,若函数 SKIPIF 1 < 0 为偶函数,则 SKIPIF 1 < 0 .
四、解答题
19.某车间生产一批零件,现从中随机抽取 SKIPIF 1 < 0 个零件,测量其内径的数据如下(单位: SKIPIF 1 < 0 ):
SKIPIF 1 < 0 .
设这 SKIPIF 1 < 0 个数据的平均值为 SKIPIF 1 < 0 ,标准差为 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 与 SKIPIF 1 < 0 ;
(2)假设这批零件的内径 SKIPIF 1 < 0 (单位: SKIPIF 1 < 0 )服从正态分布 SKIPIF 1 < 0 .从这批零件中随机抽取 SKIPIF 1 < 0 个,设这 SKIPIF 1 < 0 个零件中内径小于 SKIPIF 1 < 0 的个数为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
参考数据:若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
20.某工厂的工人生产内径为 SKIPIF 1 < 0 的一种零件,为了了解零件的生产质量,在某次抽检中,从该厂的1000个零件中抽出60个,测得其内径尺寸(单位: SKIPIF 1 < 0 )如下:
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
这里用 SKIPIF 1 < 0 表示有 SKIPIF 1 < 0 个尺寸为 SKIPIF 1 < 0 的零件, SKIPIF 1 < 0 , SKIPIF 1 < 0 均为正整数.若从这60个零件中随机抽取1个,则这个零件的内径尺寸小干 SKIPIF 1 < 0 的概率为 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 的值.
(2)已知这60个零件内径尺寸的平均数为 SKIPIF 1 < 0 ,标准差为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,在某次抽检中,若抽取的零件中至少有80%的零件内径尺寸在 SKIPIF 1 < 0 内,则称本次抽检的零件合格.试问这次抽检的零件是否合格?说明你的理由.
21.在某市举行的2024届高三第一次市统考中,为调查本次考试数学试卷的有效性,市教研部门从参加本次数学考试且成绩在50分及以上的学生中随机抽取1000名学生的成绩作为样本,并将数据统计如下表所示.
(1)假设样本中的数学考试成绩 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 为样本的平均数, SKIPIF 1 < 0 为样本的方差,以各组区间的中点值代表该组的取值,求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ;
(2)在(1)的条件下,若全市数学考试成绩在 SKIPIF 1 < 0 分的考生人数占 SKIPIF 1 < 0 及以上,则认为本次考试数学试卷的有效性符合要求,用样本估计总体,试判断本次考试数学试卷的有效性是否符合要求?
参考数据:若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
22.某公司建有1000个销售群,在某产品的销售旺季,所有群销售件数X服从正态分布 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,公司把销售件数不小于596的群称为“A级群”,销售件数在 SKIPIF 1 < 0 内的群为“B级群”,销售件数小于266的群为“C级群”.
(1)若 SKIPIF 1 < 0 ,求a的取值范围;
(2)该公司决定对每个“A级群”奖励1000元,每个“B级群”奖励500元,每个“C级群”奖励200元,那么公司大约需要准备多少奖金?(群的个数按四舍五入取整数)
附:若, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
23.2015年5月,国务院印发《中国制造 SKIPIF 1 < 0 》,是我国由制造业大国转向制造业强国战略的行动纲领.经过多年的发展,我国制造业的水平有了很大的提高,出现了一批在国际上有影响的制造企业.我国的造船业、光伏产业、5G等已经在国际上处于领先地位,我国的精密制造也有了长足发展.已知某精密设备制造企业生产某种零件,根据长期检测结果,得知生产该零件的生产线的产品质量指标值服从正态分布 SKIPIF 1 < 0 ,且质量指标值在 SKIPIF 1 < 0 内的零件称为优等品.
(1)求该企业生产的零件为优等品的概率(结果精确到0.01);
(2)从该生产线生产的零件中随机抽取5件,随机变量 SKIPIF 1 < 0 表示抽取的5件中优等品的个数,求 SKIPIF 1 < 0 的分布列、数学期望和方差.
附: SKIPIF 1 < 0 0.9973.
24.自1996年起,我国确定每年3月份最后一周的星期一为全国中小学生“安全教育日”.我国设立这一制度是为全面深入地推动中小学生安全教育工作,大力降低各类伤亡事故的发生率,切实做好中小学生的安全保护工作,促进他们健康成长.为了迎接“安全教育日”,某市将组织中学生进行一次安全知识有奖竞赛,竞赛奖励规则如下,得分在 SKIPIF 1 < 0 内的学生获三等奖,得分在 SKIPIF 1 < 0 内的学生获二等奖,得分在 SKIPIF 1 < 0 内的学生获一等奖,其他学生不获奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下:
(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获一等奖的概率;
(2)若该市所有参赛学生的成绩X近似服从正态分布 SKIPIF 1 < 0 ,利用所得正态分布模型解决以下问题:
(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过85分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于100000)随机抽取4名学生进行访谈,设其中竞赛成绩在65分以上的学生数为Y,求随机变量Y的分布列及数学期望.
附参考数据:若随机变量X服从正态分布 SKIPIF 1 < 0 ,则: SKIPIF 1 < 0
25.近期,广西军训冲上了热搜,军训项目包括无人机模拟轰炸、战场救护、实弹打靶、坦克步兵同步行军等.十万学生十万兵,无惧挑战、无惧前行,青春正当时.为了深入了解学生的军训效果,某高校对参加军训的2000名学生进行射击、体能、伤病自救等项目的综合测试,现随机抽取100名军训学生,对其测试成绩(满分:100分)进行统计,得到样本频率分布直方图,如图.
(1)根据频率分布直方图,求出 SKIPIF 1 < 0 的值并估计这100名学生测试成绩的平均数(单位:分).
(2)现该高校为了激励学生,举行了一场军训比赛,共有三个比赛项目,依次为“10千米拉练”“实弹射击”“伤病救援”,规则如下:三个环节均参与,三个项目通过各奖励300元、200元、100元,不通过则不奖励.学生甲在每个环节中通过的概率依次为 SKIPIF 1 < 0 ,假设学生甲在各环节中是否通过是相互独立的.记学生甲在这次比赛中累计所获奖励的金额为随机变量 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的分布列和数学期望 SKIPIF 1 < 0 .
(3)若该高校军训学生的综合成绩 SKIPIF 1 < 0 近似服从正态分布 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 近似为样本平均数,规定军训成绩不低于98分的为“优秀标兵”,据此估计该高校军训学生中优秀标兵的人数(结果取整数).
参考数据:若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
26.某型合金钢生产企业为了合金钢的碳含量百分比在规定的值范围内,检验员在同一试验条件下,每天随机抽样10次,并测量其碳含量(单位:%).已知其产品的碳含量服从正态分布 SKIPIF 1 < 0 .
(1)假设生产状态正常,记 SKIPIF 1 < 0 表示一天内10次抽样中其碳含量百分比在 SKIPIF 1 < 0 之外的次数,求 SKIPIF 1 < 0 及 SKIPIF 1 < 0 的数学期望:
(2)一天内的抽检中,如果出现了至少1次检测的碳含量在 SKIPIF 1 < 0 之外,就认为这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是在一天中,检测员进行10次碳含量(单位:%)检测得到的测量结果:
经计算得, SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 为抽取的第 SKIPIF 1 < 0 次的碳含量百分比 SKIPIF 1 < 0 .
(i)用样本平均数 SKIPIF 1 < 0 作为 SKIPIF 1 < 0 的估计值 SKIPIF 1 < 0 ,用样本标准差 SKIPIF 1 < 0 作为 SKIPIF 1 < 0 的估计值 SKIPIF 1 < 0 ,利用估计值判断是否需对当天的生产过程进行检查?
(ii)若去掉 SKIPIF 1 < 0 ,剩下的数的平均数和标准差分别记为 SKIPIF 1 < 0 ,试写出 SKIPIF 1 < 0 的算式(用 SKIPIF 1 < 0 表示 SKIPIF 1 < 0 ).
附:若随机变量 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 . SKIPIF 1 < 0 .
27.《中华人民共和国国民经济和社会发展第十四个五年规划和2023年远景目标纲要》指出:要加强原创性、引领性科技攻关,坚决打赢关键核心技术攻坚战.某企业集中科研骨干力量,攻克系列关键技术,已成功实现离子注入机全谱系产品国产化,工艺段覆盖至 SKIPIF 1 < 0 ,为我国芯片制造产业链补上重要一环.该企业使用新技术对某款芯片制造工艺进行改进.
(1)该款芯片生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在改进生产工艺前,前三道工序的次品率分别为 SKIPIF 1 < 0 .
①求改进生产工艺前,该款芯片的次品率 SKIPIF 1 < 0 ;
②在第四道工序中,部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记 SKIPIF 1 < 0 表示事件“某芯片经过智能检测系统筛选”, SKIPIF 1 < 0 表示事件“某芯片经人工抽检后合格”,求证: SKIPIF 1 < 0 ;
(2)改进生产工艺后,该款芯片的某项质量指标 SKIPIF 1 < 0 服从正态分布 SKIPIF 1 < 0 ,现从中随机抽取 SKIPIF 1 < 0 个,这 SKIPIF 1 < 0 个芯片中恰有 SKIPIF 1 < 0 个的质量指标 SKIPIF 1 < 0 位于区间 SKIPIF 1 < 0 .
①若 SKIPIF 1 < 0 ,以使得 SKIPIF 1 < 0 的最大 SKIPIF 1 < 0 值作为 SKIPIF 1 < 0 的估计值,求 SKIPIF 1 < 0 ;
②记这 SKIPIF 1 < 0 个芯片的质量指标 SKIPIF 1 < 0 的标准差为 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 个芯片的质量指标 SKIPIF 1 < 0 的平均数为 SKIPIF 1 < 0 ,标准差为 SKIPIF 1 < 0 ,剩余芯片的质量指标 SKIPIF 1 < 0 的平均数为 SKIPIF 1 < 0 ,标准差为 SKIPIF 1 < 0 ,试写出 SKIPIF 1 < 0 的计算式.
参考数据: SKIPIF 1 < 0 .
①两点分布
②超几何分布
③二项分布
④正态分布
SKIPIF 1 < 0
0
1
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
…
SKIPIF 1 < 0
…
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
…
SKIPIF 1 < 0
…
SKIPIF 1 < 0
SKIPIF 1 < 0
0
1
…
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
…
SKIPIF 1 < 0
学习时间:(分钟/天)
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
等级
一般
爱好
痴迷
年份代码x
1
2
3
4
5
6
中国夜间经济的市场发展规模y/万亿元
20.5
22.9
26.4
30.9
36.4
42.4
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
3.366
73.282
17.25
1.16
SKIPIF 1 < 0
0.050
0.010
0.001
SKIPIF 1 < 0
3.841
6.635
10.828
了解
不了解
合计
男生
女生
合计
康复
未康复
合计
甲组
20
30
乙组
5
30
合计
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
成绩 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
人数 SKIPIF 1 < 0
20
220
530
200
30
成绩(分)
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 .
频数
6
12
18
24
18
12
10
次数
1
2
3
4
5
6
7
8
9
10
碳含量(%)
0.31
0.32
0.34
0.31
0.30
0.31
0.32
0.31
0.33
0.32
新高考数学一轮复习讲义第10章 §10.7 二项分布、超几何分布与正态分布(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第10章 §10.7 二项分布、超几何分布与正态分布(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第10章§107二项分布超几何分布与正态分布原卷版doc、新高考数学一轮复习讲义第10章§107二项分布超几何分布与正态分布含解析doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
新高考数学一轮复习讲练测第10章第08讲 两点分布、二项分布、超几何分布与正态分布(十一大题型)(讲义)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲练测第10章第08讲 两点分布、二项分布、超几何分布与正态分布(十一大题型)(讲义)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲练测第10章第08讲两点分布二项分布超几何分布与正态分布十一大题型讲义原卷版doc、新高考数学一轮复习讲练测第10章第08讲两点分布二项分布超几何分布与正态分布十一大题型讲义解析版doc等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
新高考数学一轮复习讲练测第10章第08讲 两点分布、二项分布、超几何分布与正态分布(练习)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲练测第10章第08讲 两点分布、二项分布、超几何分布与正态分布(练习)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲练测第10章第08讲两点分布二项分布超几何分布与正态分布练习原卷版doc、新高考数学一轮复习讲练测第10章第08讲两点分布二项分布超几何分布与正态分布练习解析版doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。