第40讲 空间点、直线、平面之间的位置关系--2025高考一轮单元综合复习与测试卷
展开1.与平面有关的基本事实及推论
(1)与平面有关的三个基本事实
(2)基本事实1的三个推论
2.空间点、直线、平面之间的位置关系
3.基本事实4和等角定理
平行公理:平行于同一条直线的两条直线互相平行.
等角定理:如果空间中两个角的两边分别对应平行,那么这两个角相等或互补.
4.异面直线所成的角
(1)定义:已知a,b是两条异面直线,经过空间任意一点O作直线a′∥a,b′∥b,把a′与b′所成的角叫做异面直线a与b所成的角(或夹角).
(2)范围:eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2))).
考点1 基本事实的应用
[名师点睛]
共面、共线、共点问题的证明
(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.
(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.
(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
[典例]
如图所示,已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;
(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
[举一反三]
1.(多选)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点共面的图是( )
2.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )
A.直线AC B.直线AB
C.直线CD D.直线BC
3.(2022·上海市南洋模范中学月考)已知正方体ABCDA1B1C1D1中,BD1与平面ACB1交于点P,设BD与AC相交于点O.求证:P∈直线B1O.
考点2 空间位置关系的判断
[名师点睛]
空间中两直线位置关系的判定,主要是异面,平行和垂直的判定.异面直线的判定可采用直接法或反证法;平行直线的判定可利用三角形(梯形)中位线的性质、基本事实4及线面平行与面面平行的性质定理;垂直关系的判定往往利用线面垂直或面面垂直的性质来解决.
[典例]
(1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( )
A.平行
B.异面
C.相交或平行
D.平行或异面或相交均有可能
(2)(多选)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,则在这个正四面体中( )
A.GH与EF平行
B.BD与MN为异面直线
C.GH与MN成60°角
D.DE与MN垂直
[举一反三]
1.(多选)(2022·福州质检)四棱锥P-ABCD的所有棱长都相等,M,N分别为PA,CD的中点,下列说法正确的是( )
A.MN与PD是异面直线
B.MN∥平面PBC
C.MN∥AC
D.MN⊥PB
2.已知a,b是两条直线,α,β是两个平面,则下列说法中正确的序号为________.
①若a平行于α内的无数条直线,则a∥α;
②若α∥β,a⊂α,b⊂β,则a与b是异面直线;
③若α∥β,a⊂α,则a∥β;
④若α∩β=b,a⊂α,则a与β一定相交.
考点3 异面直线所成的角
[名师点睛]
1.综合法求异面直线所成角的步骤:
(1)作:通过作平行线得到相交直线.
(2)证:证明所作角为异面直线所成的角(或其补角).
(3)求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.
2.向量法:利用向量的数量积求所成角的余弦值.
[典例]
(1)(2021·全国乙卷)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )
A.eq \f(π,2) B.eq \f(π,3) C.eq \f(π,4) D.eq \f(π,6)
(2)将正方形ABCD沿对角线AC折起,并使得平面ABC垂直于平面ACD,直线AB与CD所成的角为( )
A.90° B.60° C.45° D.30°
[举一反三]
1.(2022·衡水检测)如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE=eq \f(1,4)SB,则异面直线SC与OE所成角的正切值为( )
A.eq \f(\r(22),2) B.eq \f(\r(5),3) C.eq \f(13,16) D.eq \f(\r(11),3)
2.(2022·湖北重点高中联考)在直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,且斜边BC=2,D是BC的中点,若AA1=eq \r(2),则异面直线A1C与AD所成角的大小为( )
A.30° B.45° C.60° D.90°
考点4 立体几何中的截线、截面问题
[名师点睛]
利用平面的性质确定截面的形状是解决问题的关键.
(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.
(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.
[典例]
1.(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )
A.eq \f(3\r(3),4) B.eq \f(2\r(3),3) C.eq \f(3\r(2),4) D.eq \f(\r(3),2)
2.(2020·新高考全国Ⅰ卷)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,eq \r(5)为半径的球面与侧面BCC1B1的交线长为__________.
[举一反三]
1.在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=eq \f(1,3)DD1,NB=eq \f(1,3)BB1,那么正方体中过M,N,C1的截面图形是( )
A.三角形 B.四边形
C.五边形 D.六边形
2.已知正方体ABCD-A1B1C1D1的棱长为3eq \r(2),E,F分别为BC,CD的中点,P是线段A1B上的动点,C1P与平面D1EF的交点Q的轨迹长为________.
基本事实
内容
图形
符号
基本
事实1
过不在一条直线上的三个点,有且只有一个平面
A,B,C三点不共线⇒存在唯一的α使A,B,C∈α
基本
事实2
如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内
A∈l,B∈l,且A∈α,B∈α⇒l⊂α
基本
事实3
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
P∈α,且P∈β⇒α∩β=l,且P∈l
推论
内容
图形
作用
推论1
经过一条直线和这条直线外一点,有且只有一个平面
确定平面的依据
推论2
经过两条相交直线,有且只有一个平面
推论3
经过两条平行直线,有且只有一个平面
直线与直线
直线与平面
平面与平面
平行关系
图形
语言
符号
语言
a∥b
a∥α
α∥β
相交关系
图形
语言
符号
语言
a∩b=A
a∩α=A
α∩β=l
独有关系
图形
语言
符号
语言
a,b是
异面直线
a⊂α
新高考数学一轮复习讲与练第19讲 空间点、直线、平面之间的位置关系(讲)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第19讲 空间点、直线、平面之间的位置关系(讲)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第19讲空间点直线平面之间的位置关系讲原卷版doc、新高考数学一轮复习讲与练第19讲空间点直线平面之间的位置关系讲解析版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
第51讲 直线与椭圆的位置关系--2025高考一轮单元综合复习与测试卷: 这是一份第51讲 直线与椭圆的位置关系--2025高考一轮单元综合复习与测试卷,文件包含第51讲直线与椭圆的位置关系原卷版docx、第51讲直线与椭圆的位置关系解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
第47讲 两直线的位置关系--2025高考一轮单元综合复习与测试卷: 这是一份第47讲 两直线的位置关系--2025高考一轮单元综合复习与测试卷,文件包含第47讲两直线的位置关系原卷版docx、第47讲两直线的位置关系解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。