- 专题12 一次函数及其应用(39题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用) 试卷 1 次下载
- 专题13 反比例函数及其应用(41题)(教师卷+学生版)- 2024年中考数学真题分类汇编(全国通用) 试卷 1 次下载
- 专题15 二次函数的实际应用(21题)(教师卷+学生版)- 2024年中考数学真题分类汇编(全国通用) 试卷 1 次下载
- 专题16 二次函数解答题压轴题(35题)(教师卷+学生版)- 2024年中考数学真题分类汇编(全国通用) 试卷 1 次下载
- 专题17 几何图形初步及相交线、平行线(40题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用) 试卷 1 次下载
专题14 二次函数的图象与性质(39题)(教师卷+学生版)- 2024年中考数学真题分类汇编(全国通用)
展开一、单选题
1.(2024·内蒙古包头·中考真题)将抛物线向下平移2个单位后,所得新抛物线的顶点式为( )
A.B.C.D.
2.(2024·广东广州·中考真题)函数与的图象如图所示,当( )时,,均随着的增大而减小.
A.B.C.D.
3.(2024·四川凉山·中考真题)抛物线经过三点,则的大小关系正确的是( )
A.B.C.D.
4.(2024·四川达州·中考真题)抛物线与轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )
A.B.C.D.
5.(2024·四川泸州·中考真题)已知二次函数(x是自变量)的图象经过第一、二、四象限,则实数a的取值范围为( )
A.B.
C.D.
6.(2024·陕西·中考真题)已知一个二次函数的自变量x与函数y的几组对应值如下表,
则下列关于这个二次函数的结论正确的是( )
A.图象的开口向上B.当时,y的值随x的值增大而增大
C.图象经过第二、三、四象限D.图象的对称轴是直线
7.(2024·湖北·中考真题)抛物线的顶点为,抛物线与轴的交点位于轴上方.以下结论正确的是( )
A.B.C.D.
8.(2024·广东·中考真题)若点都在二次函数的图象上,则( )
A.B.C.D.
9.(2024·四川自贡·中考真题)一次函数,二次函数,反比例函数在同一直角坐标系中图象如图所示,则n的取值范围是( )
A.B.C.D.
10.(2024·四川遂宁·中考真题)如图,已知抛物线(a、b、c为常数,且)的对称轴为直线,且该抛物线与轴交于点,与轴的交点在,之间(不含端点),则下列结论正确的有多少个( )
①;
②;
③;
④若方程两根为,则.
A.1B.2C.3D.4
11.(2024·江苏连云港·中考真题)已知抛物线(a、b、c是常数,)的顶点为.小烨同学得出以下结论:①;②当时,随的增大而减小;③若的一个根为3,则;④抛物线是由抛物线向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )
A.①②B.②③C.③④D.②④
12.(2024·四川广安·中考真题)如图,二次函数(,,为常数,)的图象与轴交于点,对称轴是直线,有以下结论:①;②若点和点都在抛物线上,则;③(为任意实数);④.其中正确的有( )
A.1个B.2个C.3个D.4个
13.(2024·四川眉山·中考真题)如图,二次函数的图象与轴交于点,与轴交于点,对称轴为直线,下列四个结论:①;②;③;④若,则,其中正确结论的个数为( )
A.1个B.2个C.3个D.4
14.(2024·福建·中考真题)已知二次函数的图象经过,两点,则下列判断正确的是( )
A.可以找到一个实数,使得B.无论实数取什么值,都有
C.可以找到一个实数,使得D.无论实数取什么值,都有
15.(2024·贵州·中考真题)如图,二次函数的部分图象与x轴的一个交点的横坐标是,顶点坐标为,则下列说法正确的是( )
A.二次函数图象的对称轴是直线
B.二次函数图象与x轴的另一个交点的横坐标是2
C.当时,y随x的增大而减小
D.二次函数图象与y轴的交点的纵坐标是3
16.(2024·四川乐山·中考真题)已知二次函数,当时,函数取得最大值;当时,函数取得最小值,则t的取值范围是( )
A.B.C.D.
17.(2024·黑龙江绥化·中考真题)二次函数的部分图象如图所示,对称轴为直线,则下列结论中:
① ②(m为任意实数) ③
④若、是抛物线上不同的两个点,则.其中正确的结论有( )
A.1个B.2个C.3个D.4个
18.(2024·四川广元·中考真题)如图,已知抛物线过点与x轴交点的横坐标分别为,,且,,则下列结论:
①;
②方程有两个不相等的实数根;
③;
④;
⑤.其中正确的结论有( )
A.1个B.2个C.3个D.4个
19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线与x轴交于A、B两点,,与y轴交点C的纵坐标在~之间,根据图象判断以下结论:①;②;③若且,则;④直线与抛物线的一个交点,则.其中正确的结论是( )
A.①②④B.①③④C.①②③D.①②③④
20.(2024·内蒙古赤峰·中考真题)如图,正方形的顶点,在抛物线上,点在轴上.若两点的横坐标分别为(),下列结论正确的是( )
A.B.C.D.
21.(2024·四川宜宾·中考真题)如图,抛物线的图象交x轴于点、,交y轴于点C.以下结论:①;②;③当以点A、B、C为顶点的三角形是等腰三角形时,;④当时,在内有一动点P,若,则的最小值为.其中正确结论有( )
A.1个B.2个C.3个D.4个
22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数的图象与轴交于,,其中.结合图象给出下列结论:
①;②;
③当时,随的增大而减小;
④关于的一元二次方程的另一个根是;
⑤的取值范围为.其中正确结论的个数是( )
A.B.C.D.
二、填空题
23.(2024·四川内江·中考真题)已知二次函数的图象向左平移两个单位得到抛物线,点,在抛物线上,则 (填“>”或“<”);
24.(2024·吉林长春·中考真题)若抛物线(是常数)与轴没有交点,则的取值范围是 .
25.(2024·黑龙江牡丹江·中考真题)将抛物线向下平移5个单位长度后,经过点,则 .
26.(2024·四川成都·中考真题)在平面直角坐标系中,,,是二次函数图象上三点.若,,则 (填“”或“”);若对于,,,存在,则的取值范围是 .
27.(2024·上海·中考真题)对于一个二次函数()中存在一点,使得,则称为该抛物线的“开口大小”,那么抛物线“开口大小”为 .
28.(2024·湖北武汉·中考真题)抛物线(a,b,c是常数,)经过,两点,且.下列四个结论:
①;
②若,则;
③若,则关于x的一元二次方程 无实数解;
④点,在抛物线上,若,,总有,则.
其中正确的是 (填写序号).
29.(2024·四川德阳·中考真题)如图,抛物线的顶点的坐标为,与轴的一个交点位于0和1之间,则以下结论:①;②;③若抛物线经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论是 (请填写序号).
30.(2024·山东烟台·中考真题)已知二次函数的与的部分对应值如下表:
下列结论:;关于的一元二次方程有两个相等的实数根;当时,的取值范围为;若点,均在二次函数图象上,则;满足的的取值范围是或.其中正确结论的序号为 .
三、解答题
31.(2024·江苏扬州·中考真题)如图,已知二次函数的图像与轴交于,两点.
(1)求的值;
(2)若点在该二次函数的图像上,且的面积为,求点的坐标.
32.(2024·安徽·中考真题)已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1.
(1)求b的值;
(2)点在抛物线上,点在抛物线上.
(ⅰ)若,且,,求h的值;
(ⅱ)若,求h的最大值.
33.(2024·北京·中考真题)在平面直角坐标系中,已知抛物线.
(1)当时,求抛物线的顶点坐标;
(2)已知和是抛物线上的两点.若对于,,都有,求的取值范围.
34.(2024·浙江·中考真题)已知二次函数(b,c为常数)的图象经过点,对称轴为直线.
(1)求二次函数的表达式;
(2)若点向上平移2个单位长度,向左平移m()个单位长度后,恰好落在的图象上,求m的值;
(3)当时,二次函数的最大值与最小值的差为,求n的取值范围.
35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x的二次函数的最值问题展开探究.
【经典回顾】二次函数求最值的方法.
(1)老师给出,求二次函数的最小值.
①请你写出对应的函数解析式;
②求当x取何值时,函数y有最小值,并写出此时的y值;
【举一反三】老师给出更多a的值,同学们即求出对应的函数在x取何值时,y的最小值.记录结果,并整理成下表:
注:*为②的计算结果.
【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”
甲同学:“我发现,老师给了a值后,我们只要取,就能得到y的最小值.”
乙同学:“我发现,y的最小值随a值的变化而变化,当a由小变大时,y的最小值先增大后减小,所以我猜想y的最小值中存在最大值.”
(2)请结合函数解析式,解释甲同学的说法是否合理?
(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.
36.(2024·云南·中考真题)已知抛物线的对称轴是直线.设是抛物线与轴交点的横坐标,记.
(1)求的值;
(2)比较与的大小.
37.(2024·四川成都·中考真题)如图,在平面直角坐标系中,抛物线:与轴交于A,B两点(点在点的左侧),其顶点为,是抛物线第四象限上一点.
(1)求线段的长;
(2)当时,若的面积与的面积相等,求的值;
(3)延长交轴于点,当时,将沿方向平移得到.将抛物线平移得到抛物线,使得点,都落在抛物线上.试判断抛物线与是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.
38.(2024·山东·中考真题)在平面直角坐标系中,点在二次函数的图像上,记该二次函数图像的对称轴为直线.
(1)求的值;
(2)若点在的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当时,求新的二次函数的最大值与最小值的和;
(3)设的图像与轴交点为,.若,求的取值范围.
39.(2024·四川乐山·中考真题)在平面直角坐标系中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线(a为常数且)与y轴交于点A.
(1)若,求抛物线的顶点坐标;
(2)若线段(含端点)上的“完美点”个数大于3个且小于6个,求a的取值范围;
(3)若抛物线与直线交于M、N两点,线段与抛物线围成的区域(含边界)内恰有4个“完美点”,求a的取值范围.
x
…
0
3
5
…
y
…
0
…
a
…
0
2
4
…
x
…
*
2
0
…
y的最小值
…
*
…
专题12 一次函数及其应用(39题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用): 这是一份专题12 一次函数及其应用(39题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用),文件包含专题12一次函数及其应用39题教师卷-2024年中考数学真题分类汇编全国通用docx、专题12一次函数及其应用39题学生卷-2024年中考数学真题分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
专题08 分式方程及其应用(32题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用): 这是一份专题08 分式方程及其应用(32题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用),文件包含专题08分式方程及其应用32题教师卷-2024年中考数学真题分类汇编全国通用docx、专题08分式方程及其应用32题学生卷-2024年中考数学真题分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
专题06 二次根式(24题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用): 这是一份专题06 二次根式(24题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用),文件包含专题06二次根式24题教师卷-2024年中考数学真题分类汇编全国通用docx、专题06二次根式24题学生卷-2024年中考数学真题分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。