辽宁省鞍山市名校2023年数学八上期末教学质量检测试题【含解析】
展开
这是一份辽宁省鞍山市名校2023年数学八上期末教学质量检测试题【含解析】,共17页。试卷主要包含了在平面直角坐标系中,点P,下列图形中是轴对称图形的个数是等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.几个同学包租一辆面包车去旅游,面包车的租价为元,后来又增加了两名同学,租车价不变,若设原来参加旅游的同学共有人,结果每个同学比原来少分摊元车费( )
A.B.C.D.
2.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是( )
A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF
3.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF, 下列条件不能判定△ABC≌△DEF的是( )
A.AD=CFB.∠BCA=∠FC.∠B=∠ED.BC=EF
4.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有
A.3种B.4种C.5种D.6种
5.下列从左到右的变形中,属于因式分解的是( )
A.(x+1)(x﹣1)=x2﹣1B.x2﹣5x+6=(x﹣2)(x﹣3)
C.m2﹣2m﹣3=m(m﹣2)﹣3D.m(a+b+c)=ma+mb+mc
6.在平面直角坐标系中,点P(3,﹣2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7.如图,点在一条直线上,,那么添加下列一个条件后,仍不能够判定的是( )
A.B.C.D.
8.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为( )
A.15°B.55°C.65°D.75°
9.若,则实数在数轴上对应的点的大致位置是( )
A.B.
C.D.
10.下列图形中是轴对称图形的个数是( )
A.4个B.3个C.2个D.1个
11.如图,直线m是ΔABC中BC边的垂直平分线,点P是直线m上的动点.若AB=6,AC=4,BC=1.则△APC周长的最小值是
A.10B.11C.11.5D.13
12.能使分式的值为零的所有x的值是( )
A.x=1B.x=﹣1C.x=1或x=﹣1D.x=2或x=1
二、填空题(每题4分,共24分)
13.等腰三角形的一个角是50°,则它的底角为__________°.
14.已知关于x的方程无解,则__________.
15.阅读材料后解决问题,小明遇到下面一个问题:计算.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用方差公式解决问题,具体解法如下:请你根据小明解决问题的方法,试着解决以下的问题:__________.
16.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为____(用含a、b的代数式表示).
17.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子的最小值为”.其推导方法如下:在面积是的矩形中,设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是,模仿老师的推导,可求得式子的最小值是________.
18.计算(π﹣3.14)0+=__________.
三、解答题(共78分)
19.(8分)在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.
(1)这50名同学捐款的众数为 元,中位数为 元;
(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
20.(8分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.
(1)图中m=_____,n=_____;(直接写出结果)
(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?
21.(8分)化简:2x2+(﹣2x+3y)(﹣2x﹣3y)﹣(x﹣3y)2,其中x=﹣2,y=﹣1.
22.(10分)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:
(1)求甲、乙两人射击成绩的平均数;
(2)甲、乙两人中,谁的射击成绩更稳定些?请说明理由.
23.(10分)2019年是中国建国70周年,作为新时期的青少年,我们应该肩负起实现祖国伟大复兴的责任,为了培养学生的爱国主义情怀,我校学生和老师在5月下旬集体乘车去抗日战争纪念馆研学,已知学生的人数是老师人数的12倍多20人,学生和老师总人数有540人.
(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?
(2)如果学校准备租赁型车和型车共14辆(其中型车最多7辆),已知型车每年最车可以载35人,型车每车最多可以载45人,共有几种租车方案?
(3)已知型车日租金为2000元,型车日租金为3000元,设租赁型大巴车辆,求出租赁总租金为元与的函数解析式,并求出最经济的租车方案.
24.(10分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)
25.(12分)已知直线与直线.
(1)求两直线交点的坐标;
(2)求的面积.
(3)在直线上能否找到点,使得,若能,请求出点的坐标,若不能请说明理由.
26.如图,B、A、F三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.
己知:______________________________________________________.
求证:______________________________________________________.
证明:
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】用总车费除以人数得每人分摊的车费数,两者相减,利用分式的通分进行加减并化简即可.
【详解】解:∵原来参加旅游的同学共有x人时,每人分摊的车费为元,
又增加了两名同学,租车价不变,则此时每人分摊的车费为元,
∴每个同学比原来少分摊元车费:
故选:C.
【点睛】
本题考查了列分式并进行分式的加减计算,掌握利用通分方法进行分式的加减计算是解题的关键.
2、A
【解析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.
【详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF
∴Rt△ABC≌Rt△DEF
∴BC=EF,AC=DF
所以只有选项A是错误的,故选A.
【点睛】
本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.
3、D
【解析】根据全等三角形的判定方法分别进行分析即可.
【详解】AD=CF,可用SAS证明△ABC≌△DEF,故A选项不符合题意,
∠BCA=∠F,可用AAS证明△ABC≌△DEF,故B选项不符合题意,
∠B=∠E,可用ASA证明△ABC≌△DEF,故C选项不符合题意,
BC=EF,不能证明△ABC≌△DEF,故D选项符合题意,
故选D.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.但是AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4、D
【分析】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤1.
【详解】解:∵x≥3,y≥3,
∴当x=3,y=3时,7×3+5×3=36<5;
当x=3,y=4时,7×3+5×4=41<1;
当x=3,y=5时,7×3+5×5=46<1;
当x=3,y=6时,7×3+5×6=51>1舍去;
当x=4,y=3时,7×4+5×3=43<1;
当x=4,y=4时,7×4+5×4=4<1;
当x=4,y=5时,7×4+5×5=53>1舍去;
当x=5,y=3时,7×5+5×3=1=1.
综上所述,共有6种购买方案.
故选D.
5、B
【分析】根据因式分解的定义:把一个多项式写成几个因式乘积的形式,
逐个判断即可.
【详解】解:A、不是因式分解,故本选不项符合题意;
B、是因式分解,故本选项符合题意;
C、不是因式分解,故本选项不符合题意;
D、不是因式分解,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的意义,解决本题的关键是熟练掌握因式分解的意义,明确因式分解的形式是几个因式乘积。
6、D
【解析】坐标系中的四个象限分别为第一象限(x>0, y>0);第二象限(x>0, y<0);第三象限(x<0, y<0);第四象限(x<0, y<0).所以P在第四象限.
7、D
【分析】根据题意可知两组对应边相等,所以若要证明全等只需证明第三边也相等或证明两边的夹角相等或证明一边的对角是90°利用HL定理证明全等即可.
【详解】解:,
∴,
又∵,
当,可得∠B=∠E,利用SAS可证明全等,故A选项不符合题意;
当,利用SSS可证明全等,故B选项不符合题意;
当,利用HL定理证明全等,故C选项不符合题意;
当,可得∠ACB=∠DFC,SSA无法证明全等,故D选项符合题意.
故选:D.
【点睛】
本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.
8、D
【解析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
【详解】解:∵∠CDE=165°,∴∠ADE=15°,
∵DE∥AB,∴∠A=∠ADE=15°,
∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
故选D.
【点睛】
本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
9、B
【分析】根据无理数的估算,估算出a的取值范围即可得答案.
【详解】∵
相关试卷
这是一份辽宁省鞍山市铁西区2023年数学八年级第一学期期末教学质量检测试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值是,下列交通标识不是轴对称图形的是,化简的结果为等内容,欢迎下载使用。
这是一份辽宁省鞍山市铁西区、立山区2023年数学八上期末调研试题【含解析】,共21页。
这是一份2023-2024学年辽宁省鞍山市八年级(上)期末数学试卷(含详细答案解析),共16页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。