|试卷下载
终身会员
搜索
    上传资料 赚现金
    辽宁省抚顺县联考2023年八年级数学第一学期期末经典模拟试题【含解析】
    立即下载
    加入资料篮
    辽宁省抚顺县联考2023年八年级数学第一学期期末经典模拟试题【含解析】01
    辽宁省抚顺县联考2023年八年级数学第一学期期末经典模拟试题【含解析】02
    辽宁省抚顺县联考2023年八年级数学第一学期期末经典模拟试题【含解析】03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省抚顺县联考2023年八年级数学第一学期期末经典模拟试题【含解析】

    展开
    这是一份辽宁省抚顺县联考2023年八年级数学第一学期期末经典模拟试题【含解析】,共19页。试卷主要包含了答题时请按要求用笔,点E,的算术平方根是等内容,欢迎下载使用。

    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(每小题3分,共30分)
    1.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE的长为( )
    A.B.C.D.
    2.下列运算中,正确的是( )
    A.3x+4y=12xyB.x9÷x3=x3
    C.(x2)3=x6D.(x﹣y)2=x2﹣y2
    3.若(x2-x+m)(x-8)中不含x的一次项,则m的值为( )
    A.8B.-8C.0D.8或-8
    4.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( )
    A.x=2B.x=0C.x=﹣1D.x=﹣3
    5.已知,点在内部,点与点关于对称,点与点关于对称,则是( )
    A.含30°角的直角三角形B.顶角是30°的等腰三角形
    C.等边三角形D.等腰直角三角形
    6.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为( )
    A.35°B.40°C.45°D.55°
    7.下列条件中,能确定三角形的形状和大小的是( )
    A.AB=4,BC=5,CA=10B.AB=5,BC=4,∠A=40°
    C.∠A=90°,AB=8D.∠A=60°,∠B=50°,AB=5
    8.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n﹣1)对应的点可能是( )
    A.A点B.B点C.C点D.D点
    9.的算术平方根是( )
    A.5B.﹣5C.D.
    10.关于函数y=﹣2x+1,下列结论正确的是( )
    A.图象必经过(﹣2,1)B.y随x的增大而增大
    C.图象经过第一、二、三象限D.当x>时,y<0
    二、填空题(每小题3分,共24分)
    11.甲、乙两车从A地出发,匀速驶往B地.乙车出发后,甲车才沿相同的路线开始行驶.甲车先到达B地并停留30分钟后,又以原速按原路线返回,直至与乙车相遇.图中的折线段表示从开始到相遇止,两车之间的距离与甲车行驶的时间的函数关系的图象,则其中正确的序号是___________.①甲车的速度是;②A,B两地的距离是;③乙车出发时甲车到达B地;④甲车出发最终与乙车相遇
    12.函数 y 中自变量 x 的取值范围是___________.
    13.把分式与进行通分时,最简公分母为_____.
    14.若二次根式有意义,则x的取值范围是 ▲ .
    15.如图,AB=DB,∠1=∠2,请你添加一个适当的条件,使△ABC≌△DBE,则需添加的条件是____(只要写一个条件).
    16.分解因式__________.
    17.禽流感病毒H7N9的直径约为0.000 000 03m,用科学记数法表示该数为__________m.
    18.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.
    三、解答题(共66分)
    19.(10分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
    (1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.
    (2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
    (3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
    (4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?
    20.(6分)一张方桌由一个桌面和四条桌脚组成,如果一立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木料,那么用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张.
    21.(6分)已知的三个顶点坐标分别是,,.
    (1)请在所给的平面直角坐标系中画出.
    (2)求的面积.
    22.(8分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
    该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.
    (毛利润=(售价﹣进价)×销售量)
    (1)该商场计划购进甲、乙两种手机各多少部?
    (2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
    23.(8分)如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.
    (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
    (2)已知为优三角形,,,,
    ①如图1,若,,,求的值.
    ②如图2,若,求优比的取值范围.
    (3)已知是优三角形,且,,求的面积.
    24.(8分)先化简,后计算:,其中
    25.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4),
    (1)画出△ABC关于y轴的对称图形△A1B1C1,并写出点B1的坐标;
    (2)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
    26.(10分)如图,于,于,若,.求证:平分.
    参考答案
    一、选择题(每小题3分,共30分)
    1、D
    【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.
    【详解】解:∵△ABC为等边三角形,
    ∴∠ABC=∠ACB=60°,AB=BC,
    ∵BD为中线,
    ∵CD=CE,
    ∴∠E=∠CDE,
    ∵∠E+∠CDE=∠ACB,
    ∴∠E=30°=∠DBC,
    ∴BD=DE,
    ∵BD是AC中线,CD=x,
    ∴AD=DC=x,
    ∵△ABC是等边三角形,
    ∴BC=AC=2x,BD⊥AC,
    在Rt△BDC中,由勾股定理得:
    故选:D.
    【点睛】
    本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.
    2、C
    【分析】直接应用整式的运算法则进行计算得到结果
    【详解】解:A、原式不能合并,错误;
    B、原式=,错误;
    C、原式=,正确;
    D、原式=,错误,
    故选:C.
    【点睛】
    整式的乘除运算是进行整式的运算的基础,需要完全掌握.
    3、B
    【解析】(x2-x+m)(x-8)=
    由于不含一次项,m+8=0,得m=-8.
    4、D
    【解析】∵方程ax+b=0的解是直线y=ax+b与x轴的交点横坐标,
    ∴方程ax+b=0的解是x=-3.
    故选D.
    5、C
    【解析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断.
    【详解】如图,
    ∵P,P1关于直线OA对称,P、P2关于直线OB对称,
    ∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,
    ∵∠AOB=30°,
    ∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=2∠AOB=60°,
    ∴△P1OP2是等边三角形.
    故选C.
    【点睛】
    考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题.
    6、C
    【解析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.
    【详解】解:如图,
    根据三角形外角性质,可得∠3=∠1+∠4,
    ∴∠4=∠3-∠1=95°-50°=45°,
    ∵a∥b,
    ∴∠2=∠4=45°.
    故选C.
    【点睛】
    本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
    7、D
    【分析】由已知两角夹一边的大小,,符合三角形全等的判定条件可以,可作出形状和大小唯一确定的三角形,即可三角形的大小和形状.
    【详解】解:A、由于AB=4,BC=5,CA=10,所以AB+BC<10,三角形不存在,故本选项错误;
    B、若已知AB、BC与∠B的大小,则根据SAS可判定其形状和大小,故本选项错误;
    C、有一个角的大小,和一边的长,故其形状也不确定,故本选项错误.
    D、∠A=60°,∠B=50°,AB=5,有两个角的大小和夹边的长,所以根据ASA可确定三角形的大小和形状,故本选项正确.
    故选:D.
    【点睛】
    本题主要考查了三角形的一些基础知识问题,应熟练掌握.
    8、C
    【分析】根据坐标的平移方法进行分析判断即可.
    【详解】(m+1)﹣m=1,
    n﹣(n﹣1)=1,
    则点E(m,n)到(m+1,n﹣1)横坐标向右移动1单位,纵坐标向下移动1个单位,
    故选C.
    【点睛】
    本题考查了坐标的平移,正确分析出平移的方向以及平移的距离是解题的关键.
    9、C
    【解析】解:∵=5,
    而5的算术平方根即,
    ∴的算术平方根是
    故选C.
    10、D
    【解析】根据一次函数的性质,依次分析选项可得答案.
    解:根据一次函数的性质,依次分析可得,
    A、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,
    B、k<0,则y随x的增大而减小,故错误,
    C、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,
    D、当x>时,y<0,正确;
    故选D.
    点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系
    二、填空题(每小题3分,共24分)
    11、①③④
    【分析】根据题意,两车距离为函数,由图象可知两车起始距离为60,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
    【详解】由点(0,60)可知:乙1小时行驶了60km,因此乙的速度是60km/小时,
    由点(1.5,0)可知: 1.5小时后甲追上乙,甲的速度是=100km/小时,故①正确;
    由点(b,80)可知:甲到B地,此时甲、乙相距80km,,解得:b=3.5,因此A、B两地的距离是100×3.5=350km,故②错误;
    甲车出发3.5小时到达B地,即乙车出发4.5小时,甲车到达B地,故③正确;
    c=b+=4,a=80-60×=50,,解得:d=,故:甲车出发最终与乙车相遇,故④正确;
    ∴正确的有①③④,
    故填:①③④.
    【点睛】
    本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
    12、
    【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于1.
    【详解】解:根据题意得:x-2≠1,
    解得:x≠2.
    故答案为:x≠2.
    【点睛】
    本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为1.
    13、 (x﹣y)2(x+y)
    【分析】根据因式分解可得, ,然后根据最简公分母的定义进行分析即可得出答案.
    【详解】解:把分式 与 进行通分时,
    x2﹣y2=(x+y)(x﹣y),
    故最简公分母为:(x﹣y)2(x+y).
    故答案为:(x﹣y)2(x+y).
    【点睛】
    本题主要考察了最简公分母的定义,解题的关键是对分母进行因式分解.
    14、.
    【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
    【详解】根据二次根式被开方数必须是非负数的条件,得.
    【点睛】
    本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
    15、BC=BE(答案不唯一)
    【分析】由∠1=∠2利用角的和差可得∠DBE=∠ABC,现在已知一个角和角的一边,再加一个边,运用SAS可得三角形全等.
    【详解】解:∵∠1=∠2
    ∴∠DBE=∠ABC,
    又∵AB=DB,
    ∴添加BC=BE,运用SAS即可证明△ABC≌△DBE.
    故答案为:BC=BE(答案不唯一).
    【点睛】
    本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件选择适当的判定方法是解答本题的关键.
    16、
    【解析】试题解析:
    故答案为
    点睛:因式分解的常用方法:提公因式法,公式法,十字相乘法,分组分解法.
    17、
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】解:根据科学记数法的定义:
    故答案为:.
    【点睛】
    此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.
    18、AD的中点
    【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.
    详解:如图,过AD作C点的对称点C′,
    根据轴对称的性质可得:PC=PC′,CD=C′D
    ∵四边形ABCD是矩形
    ∴AB=CD
    ∴△ABP≌△DC′P
    ∴AP=PD
    即P为AD的中点.
    故答案为P为AD的中点.
    点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
    三、解答题(共66分)
    19、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇.
    【分析】(1)速度和时间相乘可得BP、CQ的长;
    (2)利用SAS可证三角形全等;
    (3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;
    (4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.
    【详解】解:(1)BP=3×1=3㎝,
    CQ=3×1=3㎝
    (2)∵t=1s,点Q的运动速度与点P的运动速度相等
    ∴BP=CQ=3×1=3cm,
    ∵AB=10cm,点D为AB的中点,
    ∴BD=5cm.
    又∵PC=BC﹣BP,BC=8cm,
    ∴PC=8﹣3=5cm,
    ∴PC=BD
    又∵AB=AC,
    ∴∠B=∠C,
    在△BPD和△CQP中,

    ∴△BPD≌△CQP(SAS)
    (3)∵点Q的运动速度与点P的运动速度不相等,
    ∴BP与CQ不是对应边,
    即BP≠CQ
    ∴若△BPD≌△CPQ,且∠B=∠C,
    则BP=PC=4cm,CQ=BD=5cm,
    ∴点P,点Q运动的时间t=s,
    ∴cm/s;
    (4)设经过x秒后点P与点Q第一次相遇.
    由题意,得x=3x+2×10,
    解得
    ∴经过s点P与点Q第一次相遇.
    【点睛】
    本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.
    20、桌面3立方米,桌腿2立方米,方桌1张.
    【分析】本题的等量关系为:做桌面的木料+做桌腿的木料=5;桌面数量×4=桌腿数量.
    【详解】解:桌面用木料x立方米,桌腿用木料y立方米,则
    解得
    50x=1.
    答:桌面3立方米,桌腿2立方米,方桌1张.
    【点睛】
    本题考查二元一次方程组的应用.
    21、(1)详见解析;(2)16
    【分析】(1)在坐标系中标出A,B,C三点,依次连接即可;
    (2)S矩形BDEF-,求出即可.
    【详解】(1)在坐标系中标出A,B,C三点,依次连接,如图所示

    (2)由图可知D(-4,-4),E(3,-4),F(3,1),
    S矩形BDEF-.
    【点睛】
    本题是对坐标系知识的考查,熟练掌握坐标系内的点和三角形面积公式是解决本题的关键.
    22、(1)商场计划购进甲种手机20部,乙种手机30部.
    (2)当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.
    【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为11.1万元和两种手机的销售利润为2.1万元建立方程组求出其解即可.
    (2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.
    【详解】解:(1)设商场计划购进甲种手机x部,乙种手机y部,根据题意,得
    解得:.
    答:商场计划购进甲种手机20部,乙种手机30部.
    (2)设甲种手机减少a部,则乙种手机增加2a部,根据题意,得
    ,解得:a≤1.
    设全部销售后获得的毛利润为W元,由题意,得

    ∵k=0.07>0,∴W随a的增大而增大.
    ∴当a=1时,W最大=2.41.
    答:当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.
    23、(1)该命题是真命题,理由见解析;(2)①a的值为;②k的取值范围为;(3)的面积为或.
    【分析】(1)根据等边三角形的性质、优三角形和优比的定义即可判断;
    (2)①先利用勾股定理求出c的值,再根据优三角形的定义列出的等式,然后求解即可;
    ②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下之间的关系,然后根据优比的定义求解即可;
    (3)如图(见解析),设,先利用直角三角形的性质、勾股定理求出AC、AB的长及面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x的值,即可得出的面积.
    【详解】(1)该命题是真命题,理由如下:
    设等边三角形的三边边长为a
    则其中两条边的和为2a,恰好是第三边a的2倍,满足优三角形的定义,即等边三角形为优三角形
    又因该两条边相等,则这两条边的比为1,即其优比为1
    故该命题是真命题;
    (2)①
    根据优三角形的定义,分以下三种情况:
    当时,,整理得,此方程没有实数根
    当时,,解得
    当时,,解得,不符题意,舍去
    综上,a的值为;
    ②由题意得:均为正数
    根据优三角形的定义,分以下三种情况:()
    当时,则
    由三角形的三边关系定理得
    则,解得,即
    故此时k的取值范围为
    当时,则
    由三角形的三边关系定理得
    则,解得,即
    故此时k的取值范围为
    当时,则
    由三角形的三边关系定理得
    则,解得,即
    故此时k的取值范围为
    综上,k的取值范围为;
    (3)如图,过点A作,则

    是优三角形,分以下三种情况:
    当时,即,解得

    当时,即,解得

    当时,即,整理得,此方程没有实数根
    综上,的面积为或.
    【点睛】
    本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.
    24、,.
    【分析】先将分式化简,然后代入x的值即可求出答案.
    【详解】原式=
    =
    =
    =
    =
    当x=2时,原式=.
    【点睛】
    此题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    25、(1)详见解析,B1的坐标为(﹣4,2);(2)(2,0).
    【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
    (2)作点A关于x轴的对称点,再连接A′B,与x轴的交点即为所求.
    【详解】(1)如图所示,△A1B1C1即为所求,其中点B1的坐标为(﹣4,2).
    (2)如图所示,点P即为所求,其坐标为(2,0).
    【点睛】
    本题考查了坐标轴画图的问题,掌握坐标轴的性质以及关于y轴对称的点的性质是解题的关键.
    26、见解析
    【分析】证明Rt△BDE≌Rt△CDF,得到DE=DF,即可得出平分.
    【详解】∵DE⊥AB,DF⊥AC,
    ∴∠E=∠DFC=90°
    在Rt△BDE和Rt△CDF中,

    ∴Rt△BDE≌Rt△CDF(HL),
    ∴DE=DF,
    ∴AD平分∠BAC.
    【点睛】
    此题考查角平分线的判定定理:在角的内部,到角的两边的距离相等的点在角的平分线上.


    进价(元/部)
    4000
    2500
    售价(元/部)
    4300
    3000
    相关试卷

    辽宁省抚顺市抚顺县2023年八年级数学第一学期期末监测试题【含解析】: 这是一份辽宁省抚顺市抚顺县2023年八年级数学第一学期期末监测试题【含解析】,共19页。

    辽宁省抚顺抚顺县联考2023年数学八上期末学业质量监测模拟试题【含解析】: 这是一份辽宁省抚顺抚顺县联考2023年数学八上期末学业质量监测模拟试题【含解析】,共23页。

    辽宁省抚顺抚顺县联考2023年数学八上期末学业质量监测模拟试题【含解析】: 这是一份辽宁省抚顺抚顺县联考2023年数学八上期末学业质量监测模拟试题【含解析】,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map