辽宁省盘锦市大洼区2023年八年级数学第一学期期末综合测试试题【含解析】
展开1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.下列运算正确的是( )
A.a2+a2=a4B.(﹣b2)3=﹣b6
C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2
2.如果实数a,b满足a+b=6,ab=8,那么a2+b2=( )
A.36B.20C.52D.14
3.在如图的方格纸中,每个小正方形的边长均为1,点A、B是方格纸中的两个格点(即正方形的顶点),在这个的方格纸中,若△ABC是等腰三角形,则满足条件的格点C的个数是
A.6个B.7个C.8个D.9个
4.如果一次函数的图象与直线平行且与直线y=x-2在x轴上相交,则此函数解析式为( )
A.B.C.D.
5.如图,点是的角平分线上一点,于点,点是线段上一点.已知,,点为上一点.若满足,则的长度为( )
A.3B.5C.5和7D.3或7
6.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于点O,那么图中的等腰三角形个数( )
A.4B.6C.7D.8
7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )
A.10B.8C.6D.4
8.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( )
A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)
9.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是( )
A.3B.4C.5D.6
10.以下列各组线段的长为边,能组成三角形的是( )
A.2、4、7B.3、5、2C.7、7、3D.9、5、3
11.下列关于的叙述错误的是( )
A.是无理数B.
C.数轴上不存在表示的点D.面积为的正方形的边长是
12.下列命题是真命题的是( )
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
二、填空题(每题4分,共24分)
13.分解因式:x2-2x+1=__________.
14.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.
15.在平面直角坐标系中,点A(3,-2)关于y轴对称的点坐标为________.
16.如图所示的坐标系中,单位长度为1 ,点 B的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上, 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)
17.计算:___________
18.若关于的分式方程的解为非负数,则的取值范围是___________.
三、解答题(共78分)
19.(8分)化简:.
20.(8分)已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.
(1)求B车的平均速度;
(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;
(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.
21.(8分)△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1;
(2)点P在x轴上,且点P到点A与点C的距离之和最小,直接写出点P的坐标为 .
22.(10分)化简并求值:,其中
23.(10分)_______.
24.(10分)(1)因式分解:x3-4x;(2)x2-4x-12
25.(12分)如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.
26.计算
(1)(-3x2y2)2·(2xy)3÷(xy)2 (2)8(x+2)2-(3x-1)(3x+1)
(3) (π﹣3.14)0+|﹣2|﹣. (4)
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.
【详解】A、a2+a2=2a2,故本选项错误;
B、(﹣b2)3=﹣b6,故本选项正确;
C、2x•2x2=4x3,故本选项错误;
D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.
故选:B.
【点睛】
本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.
2、B
【分析】原式利用完全平方公式变形,将已知等式整体代入计算即可求出值.
【详解】解:∵a+b=6,ab=8,
∴,
故选:B.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
3、C
【解析】根据等腰三角形的性质,逐个寻找即可.
【详解】解:根据等腰三角形的性质,寻找到8个,如图所示,
故答案为C.
【点睛】
此题主要考查等腰三角形的性质,注意不要遗漏.
4、A
【分析】设所求的直线的解析式为,先由所求的直线与平行求出k的值,再由直线与直线y=x-2在x轴上相交求出b的值,进而可得答案.
【详解】解:设所求的直线的解析式为,
∵直线与直线平行,
∴,
∵直线y=x-2与x轴的交点坐标为(2,0),直线与直线y=x-2在x轴上相交,
∴,解得:b=﹣3;
∴此函数的解析式为.
故选:A.
【点睛】
本题考查了直线与坐标轴的交点以及利用待定系数法求一次函数的解析式,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题的关键.
5、D
【分析】过点P作PE⊥AO于E,根据角平分线的性质和定义可得PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°,再根据角平分线的性质可得OE=ON=5,然后根据点D与点E的先对位置分类讨论,分别画出对应的图形,利用HL证出Rt△PDE≌Rt△PMN,可得DE=MN,即可求出OD.
【详解】解:过点P作PE⊥AO于E
∵OC平分∠AOB,,
∴PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°
∴∠OPE=90°-∠POE=90°-∠PON=∠OPN
∴PO平分∠EPN
∴OE=ON=5
①若点D在点E左下方时,连接PD,如下图所示
在Rt△PDE和Rt△PMN中
∴Rt△PDE≌Rt△PMN
∴DE=MN
∵MN=ON-OM=2
∴DE=2
∴OD=OE-DE=3
②若点D在点E右上方时,连接PD,如下图所示
在Rt△PDE和Rt△PMN中
∴Rt△PDE≌Rt△PMN
∴DE=MN
∵MN=ON-OM=2
∴DE=2
∴OD=OE+DE=1
综上所述:OD=3或1.
故选D.
【点睛】
此题考查的是角平分线的性质和全等三角形的判定及性质,掌握角平分线的性质、构造全等三角形的方法、全等三角形的判定及性质和分类讨论的数学思想是解决此题的关键.
6、D
【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.
【详解】解:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB==72°,
∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BO=CO,
∴△ABC,△ABD,△ACE,△BOC是等腰三角形,
∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,
∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,
∴BE=BO,CO=CD,BC=BD=CE,
∴△BEO,△CDO,△BCD,△CBE是等腰三角形.
∴图中的等腰三角形有8个.
故选:D.
【点睛】
本题考查了等腰三角形的判定,灵活的利用等腰三角形的性质确定角的度数是解题的关键.
7、C
【解析】延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.
【详解】解:如图,延长BD交AC于点E,
∵AD平分∠BAE,AD⊥BD,
∴∠BAD=∠EAD,∠ADB=∠ADE,
在△ABD和△AED中,
,
∴△ABD≌△AED(ASA),
∴BD=DE,
∴S△ABD=S△ADE,S△BDC=S△CDE,
∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,
∴S△ADC=S△ABC=×12=6(m2),
故答案选C.
【点睛】
本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.
8、B
【解析】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,
右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,
则当放的位置是(﹣1,1)时构成轴对称图形.
故选B.
9、A
【解析】角平分线上的点到角的两边的距离相等,故点P到AB的距离是3,故选A
10、C
【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】解:根据三角形任意两边的和大于第三边,可知
A、2+4<7,不能够组成三角形,故A错误;
B、2+3=5,不能组成三角形,故B错误;
C、7+3>7,能组成三角形,故C正确;
D、3+5<9,不能组成三角形,故D错误;
故选:C.
【点睛】
本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.
11、C
【分析】根据无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式逐一判断即可.
【详解】解:A.是无理数,故本选项不符合题意;
B. ,故本选项不符合题意;
C.数轴上存在表示的点,故本选项符合题意;
D.面积为的正方形的边长是,故本选项不符合题意.
故选C.
【点睛】
此题考查的是实数的相关性质,掌握无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式是解决此题的关键.
12、A
【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.
【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;
D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;
故选A.
【点睛】
此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.
二、填空题(每题4分,共24分)
13、(x-1)1.
【详解】由完全平方公式可得:
故答案为.
【点睛】
错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
14、89.1
【分析】根据加权平均数公式计算即可:(其中w1、w2、……、wn分别为x1、x2、……、xn的权.).
【详解】小明的数学期末成绩是 =89.1(分),
故答案为89.1.
【点睛】
本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.
15、
【分析】根据关于y轴对称的点的特点:纵坐标不变,横坐标互为相反数即可得出答案.
【详解】点A(3,-2)关于y轴对称的点坐标为
故答案为:.
【点睛】
本题主要考查关于y轴对称的点的特点,掌握关于y轴对称的点的特点是解题的关键.
16、 (0,4),(1,2),(2,0),(4,4)
【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.
【详解】解:∵,
又,
∴,
又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,
∴△ADP1面积为2,故P1点即为所求,且P1(4,4),
同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,
故△ADP3面积为2,故P3点即为所求,且P3(1,2),
由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),
故答案为:P(0,4),(1,2),(2,0),(4,4).
【点睛】
考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.
17、
【分析】根据分式的乘法则计算即可.
【详解】,
故答案为:.
【点睛】
本考查了分式的乘法,熟练掌握分式的乘法则是解题的关键.
18、且
【分析】在方程的两边同时乘以2(x-1),解方程,用含a的式子表示出x的值,再根据x≥0,且x≠1,求解即可.
【详解】解:两边同时乘以2(x-1),
得:4x-2a=x-1,
解得x=,
由题意可知,x≥0,且x≠1,
∴
,解得:且,
故答案为:且.
【点睛】
本题主要考查分式方程的解,熟练应用并准确计算是解题的关键.
三、解答题(共78分)
19、
【分析】原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分即可得到最简结果.
【详解】
=
=
=.
【点睛】
本题考查了分式的加减乘除混合运算,解题的关键是熟练运用分式的运算法则并正确分解因式.
20、 (1) B车的平均速度为米/秒;(2)不能,理由见解析;(3) A车调整后的平均速度为米/秒
【分析】(1) A车走完全程所用时间秒就是B车走了路程(30-12)米所花的时间,据此列出方程并解得即可;
(2)比较A车走完全程(30+12)与B车走了路程所花的时间,即可得到答案;
(3)由(2)的结论:B车到达终点所花时间为秒,即可求得A车调整后的平均速度.
【详解】(1)设B车的平均速度为米/秒,
依题意得:
解得:
∴B车的平均速度为米/秒;
(2)不能,理由是:
A车从起点退后12米,再到达终点所花时间为:秒;
B车到达终点所花时间为:秒;
∴A车比B车先到达终点;
(3)由(2)的结论:B车到达终点所花时间为秒;
∴A车调整后的平均速度应为:米/秒.
【点睛】
本题考查了一元一次方程的实际应用,理清速度、路程、时间三者之间的关系是解题的关键.
21、(1)答案见解析;(2)(0,0).
【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点的位置,然后顺次连接即可;
(2)找出点C关于x轴的对称点C′,连接AC′与x轴的交点即为所求的点P,根据直线AC'的解析式即可得解.
【详解】(1)如图所示,△A1B1C1即为所求;
(2)如图所示,作点C关于x轴的对称点C'(﹣2,﹣2),连接AC',交x轴于P,
由A、C'的坐标可得AC'的解析式为y=x,
当y=0时,x=0,
∴点P的坐标为(0,0).
故答案为:(0,0).
【点睛】
此题考查轴对称变换作图,最短路线,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
22、 ;12
【分析】先利用分式的基本性质化简分式,然后将代入即可得出答案.
【详解】原式=
当时,原式=
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
23、
【分析】根据二次根式的混合运算顺序和运算法则进行计算即可解答.
【详解】原式=
=
=,
故答案为:.
【点睛】
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算法则是解答的关键,但需要注意最后结果必须为最简二次根式的形式.
24、(1)x(x+2)(x-2);(2)(x+2)(x-6).
【分析】(1)先提取公因式,再利用平方差公式,即可得到答案;
(2)利用十字相乘法,即可分解因式.
【详解】(1)x3-4x=x(x2-4)=x(x+2)(x-2);
(2)x2-4x-12=(x+2)(x-6).
【点睛】
本题主要考查分解因式,掌握提取公因式法,公式法以及十字相乘法,是解题的关键.
25、证明见解析
【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.
【详解】∵AC=BD,
∴AC+CD=BD+CD,
∴AD=BC,
在△AED和△BFC中,
,
∴△AED≌△BFC(ASA),
∴DE=CF.
【点睛】
本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.
26、(1)72x5y5;(2)-x2+32x+33;(3)12-5;(4) .
【分析】(1)原式第一项利用积的乘方及幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;
(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果;
(3)原式第一项利用零指数幂法则,第二项利用绝对值进行化简,第三项利用算术平方根定义计算,最后一项利用负整数指数幂化简,计算即可得到结果;
(4)原式利用平方根的定义化简,合并即可得到结果;
【详解】解:(1)原式=9x4y4•8x3y3÷x2y2=72x7-2y4+3-2=72x5y5;
(2)原式=8(x2+4x+4)-(9x2-1)=8x2+32x+32-9x2+1=-x2+32x+33;
(3)原式=1+2-﹣=12-5.
(4)原式===.
【点睛】
此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.
2023-2024学年辽宁省盘锦市大洼区八年级(上)期末数学试卷(含详细答案解析): 这是一份2023-2024学年辽宁省盘锦市大洼区八年级(上)期末数学试卷(含详细答案解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省盘锦市大洼区大洼区第一初级中学2023-2024学年七年级上学期期末数学试题(原卷版+解析版): 这是一份辽宁省盘锦市大洼区大洼区第一初级中学2023-2024学年七年级上学期期末数学试题(原卷版+解析版),文件包含精品解析辽宁省盘锦市大洼区大洼区第一初级中学2023-2024学年七年级上学期期末数学试题原卷版docx、精品解析辽宁省盘锦市大洼区大洼区第一初级中学2023-2024学年七年级上学期期末数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
2023-2024学年辽宁省盘锦市大洼区八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年辽宁省盘锦市大洼区八年级(上)期末数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。