辽宁省沈阳市皇姑区五校2023-2024学年数学八上期末检测试题【含解析】
展开考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列因式分解正确的是( )
A.B.
C.D.
2.若的三条边长分别是、、,且则这个三角形是( )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形
3.如图,,则图中全等三角形共有( )
A.1对B.2对C.3对D.4对
4.一次函数y=﹣2x+3的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5.下列因式分解正确的是( )
A.x2–9=(x+9)(x–9)B.9x2–4y2=(9x+4y)(9x–4y)
C.x2–x+=(x−)2D.–x2–4xy–4y2=–(x+2y)2
6.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为( )
A.80°B.70°C.60°D.45°
7.下列乘法运算中不能用平方差公式计算的是( )
A.(x+1)(x﹣1)B.(x+1)(﹣x+1)
C.(﹣x+1)(﹣x﹣1)D.(x+1)(﹣x﹣1)
8.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是( )
A.
B.
C.
D.
9.有理数-8的立方根为( )
A.-2B.2C.±2D.±4
10.下列图形中,是轴对称图形的是( )
A.B.C.D.
11.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A.1.4 cm2 B.1.5 cm2 C.1.6 cm2D.1.7 cm2
12.如图所示,直角三边形三边上的半圆面积从小到大依次记为、、,则、、 的关系是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.二次三项式是完全平方式,则的值是__________.
14.已知m+2n+2=0,则2m•4n的值为_____.
15.分式有意义时,x的取值范围是_____.
16.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.
17.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.
18.若,则的值是__________.
三、解答题(共78分)
19.(8分)如图,已知线段AB,根据以下作图过程:
(1)分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点;
(2)过C、D两点作直线CD.
求证:直线CD是线段AB的垂直平分线.
20.(8分)如图,一次函数的图像与轴交于点,与轴交于点,且经过点.
(1)当时;
①求一次函数的表达式;
②平分交轴于点,求点的坐标;
(2)若△为等腰三角形,求的值;
(3)若直线也经过点,且,求的取值范围.
21.(8分)阅读下列题目的解题过程:
已知为的三边,且满足,试判断的形状.
解:∵ ①
∴ ②
∴ ③
∴是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)该步正确的写法应是: ;
(3)本题正确的结论为: .
22.(10分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中, 他俩的成绩分别如下表,请根据表中数据解答下列问题:
(1)把表格补充完整:
(2)在这五次测试中,成绩比较稳定的同学是多少;若将 80 分以上(含 80 分) 的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;
(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到 90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.
23.(10分)已知 a 是的整数部分,b 是的小数部分,那么的值是__.
24.(10分)如图,在中,是上的一点,若,,,,求的面积.
25.(12分)某学校共有个一样规模的大餐厅和个一样规模的小餐厅,经过测试,若同时开放个大餐厅个小餐厅,可供名学生就餐.若同时开放个大餐厅、个小餐厅,可供名学生就餐.求个大餐厅和个小餐厅分别可供多少名学生就餐?
26.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可.
【详解】A、,故此选项错误;
B、,无法分解因式,故此选项错误;
C、,无法分解因式,故此选项错误;
D、,正确,
故选D.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
2、B
【分析】根据非负性质求出a,b,c的关系,即可判断.
【详解】∵,
∴a=b,b=c,
∴a=b=c,
∴△ABC为等边三角形.
故选B.
【点睛】
本题考查平方和绝对值的非负性,等边三角形的判定,关键在于利用非负性解出三边关系.
3、C
【分析】先利用SAS证出△ABD≌△CDB,从而得出AD=CB,再利用SSS证出△ABC≌△CDA,从而得出∠ABO=∠CDO,最后利用AAS证出△ABO≌△CDO,即可得出结论.
【详解】解:在△ABD和△CDB中
∴△ABD≌△CDB
∴AD=CB
在△ABC和△CDA中
∴△ABC≌△CDA
∴∠ABO=∠CDO
在△ABO和△CDO中
∴△ABO≌△CDO
共有3对全等三角形
故选C.
【点睛】
此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.
4、C
【解析】试题解析:∵k=-2<0,
∴一次函数经过二四象限;
∵b=3>0,
∴一次函数又经过第一象限,
∴一次函数y=-x+3的图象不经过第三象限,
故选C.
5、D
【分析】利用以及进行因式分解判断即可.
【详解】A.原式=(x+3)(x–3),选项错误;
B.原式=(3x+2y)(3x–2y),选项错误;
C.原式=(x–)2,选项错误;
D.原式=–(x2+4xy+4y2)=–(x+2y)2,选项正确.
故选D.
【点睛】
本题主要考查了因式分解,熟练掌握相关公式是解题关键.
6、B
【解析】连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.
【详解】如图所示,连接AE.
∵AB=DE,AD=BC
∵DE∥BC,
∴∠ADE=∠B,可得AE=DE
∵AB=AC,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE与△CBA中,
,
∴△ADE≌△CBA(ASA),
∴AE=AC,∠AED=∠BAC=20°,
∵∠CAE=∠DAE-∠BAC=80°-20°=60°,
∴△ACE是等边三角形,
∴CE=AC=AE=DE,∠AEC=∠ACE=60°,
∴△DCE是等腰三角形,
∴∠CDE=∠DCE,
∴∠DEC=∠AEC-∠AED=40°,
∴∠DCE=∠CDE=(180-40°)÷2=70°.
故选B.
【点睛】
考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.
7、D
【分析】根据平方差公式的特点逐个判断即可.
【详解】解:选项A:(x+1)(x-1)=x2-1,故选项A可用平方差公式计算,不符合题意,
选项B:(x+1)(-x+1)=1-x2,故选项B可用平方差公式计算,不符合题意,
选项C:(-x+1)(-x-1)=x2-1,故选项C可用平方差公式计算,不符合题意,
选项D:(x+1)(-x-1)=-(x+1)2,故选项D不可用平方差公式计算,符合题意,
故选:D.
【点睛】
此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.
8、C
【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.
详解:
由被开方数越大算术平方根越大,
即
故选C.
点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.
9、A
【分析】利用立方根定义计算即可得到结果.
【详解】解:有理数-8的立方根为=-2
故选A.
【点睛】
此题考查了立方根,熟练掌握立方根的定义是解本题的关键.
10、B
【分析】根据轴对称图形的定义判断即可.
【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.
故选B.
【点睛】
本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.
11、B
【详解】延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=91°,∴△ABP≌△BEP,∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=1.5,故选B.
考点:1.等腰三角形的判定与性质;2.三角形的面积.
12、A
【分析】设三个半圆的直径分别为:d1、d2、d1,半圆的面积=π×()2,将d1、d2、d1代入分别求出S1、S2、S1,由勾股定理可得:d12+d22=d12,观察三者的关系即可.
【详解】解:设三个半圆的直径分别为:d1、d2、d1,
S1=×π×()2=,
S2=×π×()2=,
S1=×π×()2=.
由勾股定理可得:
d12+d22=d12,
∴S1+S2=(d12+d22)==S1,
所以S1、S2、S1的关系是:S1+S2=S1.
故选A.
【点睛】
本题主要考查运用勾股定理结合图形求面积之间的关系,关键在于根据题意找出直角三角形,运用勾股定理求出三个半圆的直径之间的关系.
二、填空题(每题4分,共24分)
13、17或-7
【分析】利用完全平方公式的结构特征判断即可确定出k的值.
【详解】解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7
【点睛】
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
14、
【解析】把2m•4n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=-2代入求值即可.
【详解】∵m+2n+2=0,
∴m+2n=-2,
∴2m•4n=2m•22n=2m+2n=2-2=.
故答案为
【点睛】
本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.
15、x>1.
【解析】试题解析:根据题意得: 解得:
故答案为
点睛:二次根式有意义的条件:被开方数大于等于零.
分式有意义的条件:分母不为零.
16、1.5
【详解】因为甲过点(0,0),(2,4),所以S甲=2t.
因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=
17、1.
【分析】先把方程左边的代数式进行配方,再根据偶数次幂的非负性,即可求解.
【详解】∵x1+y1+z1-1x+4y-6z+14=0,
∴x1-1x+1+y1+4y+4+z1-6z+9=0,
∴(x-1)1+(y+1)1+(z-3)1=0,
∴x-1=0,y+1=0,z-3=0,
∴x=1,y=-1,z=3,
∴x+y+z=1-1+3=1.
故答案为:1.
【点睛】
本题主要考查完全平方公式的应用以及偶数次幂的非负性,熟练掌握完全平方公式,是解题的关键.
18、49
【分析】根据平方差公式把原式进行因式分解,把整体代入分解后的式子,化简后再次利用整体代入即可得.
【详解】,
原式,
故答案为:49.
【点睛】
考查了“整体代换”思想在因式分解中的应用,平方差公式,熟记平方差公式,通过利用整体代入式解题关键.
三、解答题(共78分)
19、见解析
【分析】连接AC、BC、AD、BD,根据SSS证明△ACD≌BCD,从而得到∠ACO=∠BCO、∠ADO=∠BDO,再根据SAS证明△AOC≌BOC,△AOD≌△BOD,从而得到AO=BO,OC⊥AB,OC⊥AB,再得出结论.
【详解】连接AC、BC、AD、BD,如图所示:
∵分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点,
∴AC=BC,AD=BD,
在△ACD和△BCD中
,
∴△ACD≌△BCD,
∴∠ACO=∠BCO、∠ADO=∠BDO,
在△AOC和△BOC中,
,
∴△AOC≌BOC,
∴OA=OB,∠COA=∠COB=90º,
∴OC垂直平分AB,
同理可证△AOD≌△BOD,OC垂直平分AB,
∴直线CD是线段AB的垂直平分线.
【点睛】
考查了全等三角形的判定和性质,解题关键是证明△ACD≌BCD,从而得到∠ACO=∠BCO、∠ADO=∠BDO,再根据SAS证明△AOC≌BOC,再得到OC垂直平分AB.
20、 (1)①;②(-,0);(2) ;(3) .
【分析】(1)①把x=2,y=代入中求出k值即可;
②作DE⊥AB于E,先求出点A、点B坐标,继而求出OA、OB、AB的长度,由角平分线的性质可得到OD=DE,于是BE=OB可求BE、AE的长,然后在中用勾股定理可列方程,解方程即可求得OD的长;
(2)求得点A坐标是(-4,0),点C坐标是(2,),由△为等腰三角形,可知OC=OA=4,故,解方程即可;
(3) 由直线经过点, 得=,由(2)知,故,用k表示p代入中得到关于k的不等式,解不等式即可.
【详解】解:(1)当时,点C坐标是,
①把x=2,y=代入中,
得,
解得,
所以一次函数的表达式是;
②如图,平分交轴于点,作DE⊥AB于E,
∵在中,当x=0时,y=3;当y=0时,x=-4,
∴点A坐标是(-4,0),点B坐标是(0,3),
∴OA=4,OB=3,
∴,
∵平分, DE⊥AB, DO⊥OB,
∴OD=DE,
∵BD=BD,
∴,
∴BE=OB=3,
∴AE=AB-BE=5-3=2,
∵在中,,
∴,
∴OD= ,
∴点D坐标是(-,0),
(2) ∵在中,当y=0时,x=-4;当x=2时,y=,
∴点A坐标是(-4,0),点C坐标是(2,),
∵△为等腰三角形,
∴OC=OA=4,
∴,
∴,(不合题意,舍去),
∴.
(3) ∵直线经过点,
∴=,
由(2)知,
∴,
∴,
∵,
∴,
∴.
【点睛】
本题考查了一次函数的综合应用,熟练掌握一次函数的性质及运用数形结合的思想解题是关键.
21、故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
【解析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;
(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】(1)上述解题过程,从第③步开始出现错误;
(2)正确的写法为:c (a−b)=(a+b)(a−b),
移项得:c (a−b)−(a+b)(a−b)=0,
因式分解得:(a−b)[c−(a+b)]=0,
则当a−b=0时,a=b;当a−b≠0时,a+b=c;
(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。
故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形
【点睛】
此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.
22、(1)84,104;(2)乙;40%,80%;(3)我认为选乙参加比较合适.
【解析】(1)根据乙五次成绩,先求平均数,再求方差即可,
(2)方差小代表成绩稳定;优秀率表示超过80分次数的多少,次数越多越优秀,
(3)选择成绩高且稳定的人去参加即可.
【详解】(1)乙= =84,
S2 乙= [(70-84)2+(90-84)2+(100-84)2+(80-84)2+(80-84)2]=104
(2)∵甲的方差>乙的方差
∴成绩比较稳定的同学是乙,
甲的优秀率= ×100%=40%
乙的优秀率= ×100%=80%
(3)我认为选乙参加比较合适,
因为乙的成绩平均分和优秀率都比甲高,且比甲稳定,因此选乙参加比赛比较合适.
【点睛】
本题考查了简单的数据分析,包括求平均数,方差,优秀率,属于简单题,熟悉计算方法和理解现实含义是解题关键.
23、1.
【分析】直接利用的取值范围,得出的值,进而求出答案.
【详解】,
,
,
.
故答案为:1.
【点睛】
本题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.
24、1
【分析】先根据,,,利用勾股定理的逆定理求证是直角三角形,再利用勾股定理求出的长,然后利用三角形面积公式即可得出答案.
【详解】解:,
是直角三角形,
,
在中,,
,
.
因此的面积为1.
故答案为1.
【点睛】
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证是直角三角形.
25、1个大餐厅可供900名学生就餐,1个小餐厅可供300名学生就餐
【分析】设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据开放3个大餐厅、2个小餐厅,可供3300名学生就餐,开放2个大餐厅、1个小餐厅,可供2100名学生就餐列方程组求解.
【详解】解:设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,
根据题意,得,
解得:,
答:1个大餐厅可供900名学生就餐,1个小餐厅可供300名学生就餐.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
26、两次分别购进这种衬衫30件和15件.
【解析】试题分析:设第一批衬衫每件进价为x元,则第二批每件进价为(x﹣10)元.根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.
试题解析:设第一批衬衫每件进价为x元,则第二批每件进价为(x﹣10)元.
由题意:,
解得:x=150,
经检验x=150是原方程的解,且符合题意,
=30件,=15件,
答:两次分别购进这种衬衫30件和15件.
第 1 次
第 2 次
第 3 次
第 4 次
第 5 次
平均分
众数
中位数
方差
甲
60 分
75 分
100 分
90 分
75 分
80 分
75 分
75 分
190
乙
70 分
90 分
100 分
80 分
80 分
80 分
80 分
辽宁省沈阳市皇姑区第三十三中学2023-2024学年数学八上期末达标检测试题【含解析】: 这是一份辽宁省沈阳市皇姑区第三十三中学2023-2024学年数学八上期末达标检测试题【含解析】,共18页。试卷主要包含了考生要认真填写考场号和座位序号,已知等内容,欢迎下载使用。
辽宁省沈阳市皇姑区2023年数学八上期末检测模拟试题【含解析】: 这是一份辽宁省沈阳市皇姑区2023年数学八上期末检测模拟试题【含解析】,共23页。试卷主要包含了如图,已知点A等内容,欢迎下载使用。
辽宁省皇姑区2023-2024学年数学八上期末达标检测试题【含解析】: 这是一份辽宁省皇姑区2023-2024学年数学八上期末达标检测试题【含解析】,共20页。试卷主要包含了方差,把分解因式,结果正确的是,下列各数是有理数的是等内容,欢迎下载使用。