辽宁省营口市大石桥市金桥中学2023-2024学年数学八上期末检测模拟试题【含解析】
展开
这是一份辽宁省营口市大石桥市金桥中学2023-2024学年数学八上期末检测模拟试题【含解析】,共17页。试卷主要包含了下列实数为无理数的是,下列图标中,不是轴对称图形的是,当分式有意义时,x的取值范围是,如图,在中,,,,,则是等内容,欢迎下载使用。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打( )
A.九折B.八折C.七折D.六折
2.在,,,0,这四个数中,为无理数的是( )
A.B.C.D.0
3.如图,在矩形ABCD中对角线AC与BD相交于点O,AE⊥BD,垂足为点E,AE=8,AC=20,则OE的长为( )
A.4B.4C.6D.8
4.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )
A.最高分B.中位数C.方差D.平均数
5.下列实数为无理数的是( )
A.0.101B.C.D.
6.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点,分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点,若点P的坐标为(m,n),则下列结论正确的是( )
A.m=2nB.2m=nC.m=nD.m=-n
7.下列图标中,不是轴对称图形的是( ).
A.B.C.D.
8.如图,为线段的中点,,、、、到点的距离分别是、、、,下列四点中能与、构成直角三角形的顶点是( )
A.B.C.D.
9.当分式有意义时,x的取值范围是( )
A.x<2B.x>2C.x≠2D.x≥2
10.如图,在中,,,,,则是( )
A.B.5C.D.10
二、填空题(每小题3分,共24分)
11.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.
12.分解因式____________.
13.分解因式:___________.
14.如图,△ABC的面积为11cm1,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是_____cm1.
15.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____
16.某单位定期对员工按照专业能力、工作业绩、考勤情况三方面进行考核(每项满分100分),三者权重之比为,小明经过考核后三项分数分别为90分,86分,83分,则小明的最后得分为_________分.
17.如图,在四边形中, ,对角线平分,连接,,若,,则_________________.
18.点关于轴的对称点的坐标为______.
三、解答题(共66分)
19.(10分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.
20.(6分)如图,已知直线,直线,与相交于点,,分别与轴相交于点.
(1)求点P的坐标.
(2)若,求x的取值范围.
(3)点为x轴上的一个动点,过作x轴的垂线分别交和于点,当EF=3时,求m的值.
21.(6分)已知如图,长方体的长,宽,高,点在上,且,一只蚂蚁如果沿沿着长方体的表面从点爬到点,需要爬行的最短距离是多少?
22.(8分)计算
(1)
(2)分解因式:
23.(8分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:
原式=a2+2ab﹣(a2﹣b2) (第一步)
=a2+2ab﹣a2﹣b2(第二步)
=2ab﹣b2 (第三步)
(1)该同学解答过程从第几步开始出错,错误原因是什么;
(2)写出此题正确的解答过程.
24.(8分)(1)计算
(2)运用乘法公式计算
(3)因式分解:
(4)因式分解:
25.(10分)计算:(x﹣2)2﹣(x﹣3)(x+3)
26.(10分)如图,点A,B,C的坐标分别为
(1)画出关于y轴对称的图形.
(2)直接写出点关于x轴对称的点的坐标.
(3)在x轴上有一点P,使得最短,求最短距离是多少?
参考答案
一、选择题(每小题3分,共30分)
1、A
【分析】利润率不低于12.5%,即利润要大于或等于80×12.5%元,设商品打x折,根据打折之后利润率不低于12.5%,列不等式求解.
【详解】解:设商品打x折,
由题意得,100×0.1x−80≥80×12.5%,
解得:x≥9,
即商品最多打9折.
故选:A.
【点睛】
本题考查一元一次不等式的应用,正确理解利润率的含义是解题的关键.
2、C
【解析】根据无理数的定义:无限不循环小数,进行判断即可.
【详解】-3,,0为有理数;
为无理数.
故选:C.
【点睛】
本题考查无理数,熟记无理数概念是解题关键.
3、C
【分析】先求AO的长,再根据勾股定理计算即可求出答案.
【详解】解:∵四边形ABCD是矩形,
∴AO=COAC=10,
∴OE1.
故选:C.
【点睛】
此题主要考查了矩形的性质及勾股定理,正确的理解勾股定理是解决问题的关键.
4、B
【解析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.
考点:统计量的选择.
5、D
【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.
【详解】解:A、0.101是有理数,
B、=3是有理数,
C、是有理数,
D、是无限不循环小数即是无理数,
故选:D.
【点睛】
本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.
6、D
【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.
【详解】解:∵由题意可知,点C在∠AOB的平分线上,∴m=-n.
故选:D.
【点睛】
本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键.
7、C
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【详解】A、是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项正确;
D、是轴对称图形,故本选项错误.
故选:C.
【点睛】
本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
8、B
【分析】根据O为线段AB的中点,AB=4cm,得到AO=BO=2cm,由P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,得到OP2=2cm,推出OP2=AB,根据直角三角形的判定即可得到结论.
【详解】∵O为线段AB的中点,AB=4cm,
∴AO=BO=2cm,
∵P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,
∴OP2=2cm,
∴OP2=AB,
∴P1、P2、P3、P4四点中能与A、B构成直角三角形的顶点是P2,
故选:B.
【点睛】
本题考查了直角三角形的判定定理,熟记直角三角形的判定是解题的关键.
9、C
【解析】试题分析:根据分式有意义的条件可得:x-2≠0,所以可得:x≠2.
故应选C.
考点:分式的意义.
10、A
【分析】由已知条件得出OB,OA的长,再根据30°所对的直角边是斜边的一半得出OD.
【详解】解:∵,,,
∴OB=10,
∴OA==,
又∵,
∴在直角△AOD中,OD=OA=,
故选A.
【点睛】
本题考查了直角三角形的性质,30°所对直角边是斜边的一半,勾股定理,关键是要得出OA的长度.
二、填空题(每小题3分,共24分)
11、1.
【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A、B的面积之和为1.
【详解】解:如图所示:
设正方形A、B的边长分别为x,y,
依题意得:,
化简得:
解得:x2+y2=1,
∴SA+SB=x2+y2=1,
故答案为1.
【点睛】
本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.
12、
【分析】先提取公因式,再利用平方差公式即可求解.
【详解】
故答案为:.
【点睛】
此题主要考查因式分解,解题的关键是熟知因式分解的方法.
13、
【分析】原式利用平方差公式分解即可.
【详解】,
故答案为.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.
14、2.
【分析】延长CD交AB于E,依据△ACD≌△AED,即可得到CD=ED,进而得到S△BCD=S△BED,S△ACD=S△AED,据此可得S△ABD=S△AED+S△BED=S△ABC.
【详解】解:如图所示,延长CD交AB于E,
由题可得,AP平分∠BAC,
∴∠CAD=∠EAD,
又∵CD⊥AP,
∴∠ADC=∠ADE=90°,
又∵AD=AD,
∴△ACD≌△AED(ASA),
∴CD=ED,
∴S△BCD=S△BED,S△ACD=S△AED,
∴S△ABD=S△AED+S△BED=S△ABC=×11=2(cm1),
故答案为:2.
【点睛】
本题考查的是作图−基本作图以及角平分线的定义,熟知角平分线的作法是解答此题的关键.
15、1
【分析】先计算(1+m) (1+n),再把m+n=4,mn=-2代入即可求值.
【详解】解:(1+m) (1+n)=1+m+n+mn
当m+n=4,mn=-2时,
原式=1+4+(-2)=1.
故答案为:1
【点睛】
本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m) (1+n)是解题关键.
16、82.2
【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.
【详解】解:小明的最后得分=27+43+1.2=82.2(分),
故答案为:82.2.
【点睛】
此题主要考查了加权平均数,关键是掌握加权平均数的计算方法.若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数.
17、1
【分析】由等腰三角形的性质和角平分线的性质可推出AD∥BC,然后根据平行线的性质和已知条件可推出CA=CD,可得CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,根据等腰三角形的性质和已知条件可得DE的长和,然后即可根据AAS证明△BCF≌△CDE,可得CF=DE,再根据三角形的面积公式计算即得结果.
【详解】解:∵,∴∠CBD=∠CDB,
∵平分,∴∠ADB=∠CDB,
∴∠CBD=∠ADB,∴AD∥BC,∴∠CAD=∠ACB,
∵,,∠CBD=∠CDB,
∴,∴,
∴CA=CD,∴CB=CA=CD,
过点C作CE⊥BD于点E,CF⊥AB于点F,如图,则,,
∵,,∴,
在△BCF和△CDE中,∵,∠BFC=∠CED=90°,CB=CD,
∴△BCF≌△CDE(AAS),∴CF=DE=5,
∴.
故答案为:1.
【点睛】
本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.
18、
【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.
【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数
∴点关于y轴的对称点的坐标为.
故答案为:
【点睛】
考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.
三、解答题(共66分)
19、OE⊥AB,证明见解析.
【分析】首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB,再利用等腰三角形“三线合一”的性质即可证得结论.
【详解】解:在△BAC和△ABD中
AC=BD
∠BAC=∠ABD
AB=BA
∴△BAC≌△ABD
∴∠OBA=∠OAB
∴OA=OB
又∵AE=BE
∴OE⊥AB.
20、 (1)P(-2,1);(2)-3
相关试卷
这是一份辽宁省营口市大石桥市金桥中学2023年数学八上期末复习检测试题【含解析】,共18页。试卷主要包含了下列因式分解结果正确的是,已知,《孙子算经》中有一道题,原文是,已知有意义,则的取值范围是,下列各式等内容,欢迎下载使用。
这是一份辽宁省营口市大石桥市金桥中学2023年八年级数学第一学期期末质量检测试题【含解析】,共20页。试卷主要包含了如图,下列各式中正确的是,在平面直角坐标系中,点M等内容,欢迎下载使用。
这是一份辽宁省营口市大石桥市金桥中学2023年八年级数学第一学期期末考试模拟试题【含解析】,共19页。试卷主要包含了下列各组图形中,是全等形的是,在下列各式中,计算正确的是,下列分解因式正确的是,下列各式计算正确的是,无理数2﹣3在等内容,欢迎下载使用。