年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    浙教版九年级上册数学4.1 比例线段知识点分类训练

    立即下载
    加入资料篮
    浙教版九年级上册数学4.1 比例线段知识点分类训练第1页
    浙教版九年级上册数学4.1 比例线段知识点分类训练第2页
    浙教版九年级上册数学4.1 比例线段知识点分类训练第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学浙教版九年级上册第4章 相似三角形4.1 比例线段练习

    展开

    这是一份初中数学浙教版九年级上册第4章 相似三角形4.1 比例线段练习,共9页。试卷主要包含了如图,线段AB,如果a等内容,欢迎下载使用。

    考点一: 线段的比
    例1.一种精密零件长2毫米,把它画在图纸上,图上零件长10厘米,这张图纸的比例尺是( )
    A.1:500B.500:1C.1:50D.50:1
    变式1-1.在比例尺为1:100000的南京市地图上,太平北路的长度约为1.5cm,它的实际长度约为( )
    A.1500mB.1500dmC.1500cmD.1500km
    变式1-2.如图,线段AB:BC=5:12,那么AC:BC等于( )

    A.5:7B.12:17C.7:12D.17:12
    考点二:成比例线段
    例2.下列各组线段的长度成比例的是( )
    A.0.3m,0.6m,0.5m,0.9m
    B.30cm,20cm,90cm,60cm
    C.1cm,2cm,3cm,4cm
    D.2cm,3cm,4cm,5cm
    变式2-1.下列各组中的四条线段成比例的是( )
    A.a=1,b=2,c=3,d=4 B.a=2,b=3,c=4,d=5
    C.a=2,b=3,c=4,d=6 D.a=2,b=4,c=6,d=8
    变式2-2.下列四组线段中,是成比例线段的一组是( )
    A.3,4,6,7B.5,6,7,8C.2,4,6,8D.8,10,12,15
    考点三:比例中项
    例3.如果a:b=10:15,且b是a和c的比例中项,那么b:c等于( )
    A.4:3B.3:2C.2:3D.3:4
    变式3-1.已知线段a=4,b=16,如果线段c是a、b的比例中项,那么c的值是 .
    变式3-2.已知线段a=4cm,线段b=9cm,线段c是线段a、b的比例中项,则c= cm.
    考点四:比例的性质
    例4.已知2x=3yxy≠0,则下列比例式成立的是( )
    A.x3=y2B.x2=3yC.xy=23D.yx=32
    变式4-1.已知实数a,b满足ab=53,则a−bb的值为( )
    A.35B.23C.32D.53
    变式4-2.若xy=12,则y−xy的值是( )
    A.-1B.−12C.12D.1
    考点五:黄金分割
    例5.黄金矩形的宽、长之比为黄金分割率,换言之,矩形的短边长与长边长的比为5−12,黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子.若一个黄金矩形的长边的长为8,则短边长m的值最接近的是( )
    A.4B.5C.6D.7
    变式5-1.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为( ).
    A.5−12米B.5−1米C.5+12米D.5+22米
    变式5-2.如图,在正五边形AFGBE中,连接它们的对角线,其中点C是对角线AB与对角线EG的交点,已知点C为BD的黄金分割点,BE=2,则CD的长度为( )
    A.3+5B.3−5C.−1+5D.1+5
    参考答案
    考点一: 线段的比
    例1.一种精密零件长2毫米,把它画在图纸上,图上零件长10厘米,这张图纸的比例尺是( )
    A.1:500B.500:1C.1:50D.50:1
    【答案】D
    【详解】解:∵10厘米=100毫米,
    ∴100:2=50:1,
    ∴这张图纸的比例尺是50:1.
    故选:D.
    变式1-1.在比例尺为1:100000的南京市地图上,太平北路的长度约为1.5cm,它的实际长度约为( )
    A.1500mB.1500dmC.1500cmD.1500km
    【答案】A
    【详解】解:设它的实际长度为xcm,
    根据题意得:1100000=1.5x,
    解得:x=150000,
    ∵150000cm=15000dm=1500m=1.5km,
    ∴它的实际长度约为1500m.
    故选:A.
    变式1-2.如图,线段AB:BC=5:12,那么AC:BC等于( )

    A.5:7B.12:17C.7:12D.17:12
    【答案】D
    【详解】解:设AB=5x,则BC=12x,AC=AB+BC=5x+12x=17x,
    ∴AC:BC=17x:12x=17:12,
    故选:D.
    考点二:成比例线段
    例2.下列各组线段的长度成比例的是( )
    A.0.3m,0.6m,0.5m,0.9m
    B.30cm,20cm,90cm,60cm
    C.1cm,2cm,3cm,4cm
    D.2cm,3cm,4cm,5cm
    【答案】B
    【详解】A、0.3×0.9≠0.6×0.5,各组线段的长度不成比例,该选项不符合题意;
    B、20×90=30×60,各组线段的长度成比例,该选项符合题意;
    C、1×4≠2×3,各组线段的长度不成比例,该选项不符合题意;
    D、2×5≠3×4,各组线段的长度不成比例,该选项不符合题意.
    故选:B
    变式2-1.下列各组中的四条线段成比例的是( )
    A.a=1,b=2,c=3,d=4 B.a=2,b=3,c=4,d=5
    C.a=2,b=3,c=4,d=6 D.a=2,b=4,c=6,d=8
    【答案】C
    【详解】解:A、1×4≠2×3,故此选项中四条线段不成比例,不符合题意;
    B、2×5≠3×4,故此选项中四条线段不成比例,不符合题意;
    C、2×6=3×4,故此选项中四条线段成比例,符合题意;
    D、2×8≠4×6,故此选项中四条线段不成比例,不符合题意,
    故选:C.
    变式2-2.下列四组线段中,是成比例线段的一组是( )
    A.3,4,6,7B.5,6,7,8C.2,4,6,8D.8,10,12,15
    【答案】D
    【详解】
    解:A、∵3×7≠4×6,∴四条线段不成比例;
    B、∵5×8≠6×7,∴四条线段不成比例;
    C、∵2×8≠4×6,∴四条线段不成比例;
    D、∵15×8=10×12,∴四条线段成比例;
    故选:D.
    考点三:比例中项
    例3.如果a:b=10:15,且b是a和c的比例中项,那么b:c等于( )
    A.4:3B.3:2C.2:3D.3:4
    【答案】C
    【详解】解:∵b是a、c的比例中项,
    ∴b2=ac,
    ∴bc=ab
    ∵a:b=10:15,
    ∴bc=ab=1015=23,
    故选:C.
    变式3-1.已知线段a=4,b=16,如果线段c是a、b的比例中项,那么c的值是 .
    【答案】8
    【详解】解:∵线段c是a、b的比例中项,
    ∴c2=ab=64,
    解得:c=±8,
    又∵线段是正数,
    ∴c=8.
    故答案为:8.
    变式3-2.已知线段a=4cm,线段b=9cm,线段c是线段a、b的比例中项,则c= cm.
    【答案】6
    【详解】解:∵线段c是线段a、b的比例中项,
    ∴ c2=ab,
    ∵ a=4cm,b=9cm,
    ∴ c2=4×9=36,
    ∴ c=6或c=−6(舍),
    故答案为:6.
    考点四:比例的性质
    例4.已知2x=3yxy≠0,则下列比例式成立的是( )
    A.x3=y2B.x2=3yC.xy=23D.yx=32
    【答案】A
    【详解】解:A、由x3=y2得2x=3y,故此选项比例式成立,符合题意;
    B、由x2=3y得xy=6,故此选项比例式不成立,不符合题意;
    C、由xy=23得3x=2y,故此选项比例式不成立,不符合题意;
    D、由yx=32得2y=3x,故此选项比例式不成立,不符合题意,
    故选:A.
    变式4-1.已知实数a,b满足ab=53,则a−bb的值为( )
    A.35B.23C.32D.53
    【答案】B
    【详解】解:∵ab=53,
    ∴a−bb=5−33=23,
    故选:B.
    变式4-2.若xy=12,则y−xy的值是( )
    A.-1B.−12C.12D.1
    【答案】C
    【详解】∵xy=12,
    ∴y=2x,
    ∴y−xy=2x−x2x=x2x=12;
    故选:C.
    考点五:黄金分割
    例5.黄金矩形的宽、长之比为黄金分割率,换言之,矩形的短边长与长边长的比为5−12,黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子.若一个黄金矩形的长边的长为8,则短边长m的值最接近的是( )
    A.4B.5C.6D.7
    【答案】B
    【详解】解:∵8×5−12≈8×0.618=4.944,
    ∴选项中最接近的数是5,
    故选:B.
    变式5-1.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为( ).
    A.5−12米B.5−1米C.5+12米D.5+22米
    【答案】B
    【详解】解析:∵BE2=AE⋅AB,
    设BE=x,则AE=2−x,
    ∵AB=2,
    ∴x2=22−x,
    即x2+2x−4=0,
    解得:x1=−1+5,x2=−1−5(舍去),
    ∴线段BE的长为5−1米.
    故选:B.
    变式5-2.如图,在正五边形AFGBE中,连接它们的对角线,其中点C是对角线AB与对角线EG的交点,已知点C为BD的黄金分割点,BE=2,则CD的长度为( )
    A.3+5B.3−5C.−1+5D.1+5
    【答案】B
    【详解】解:∵五边形AFGBE为正五边形
    ∴AE=BE=2,∠AEB=∠EBG=180°×5−25=108°,BE=BG,
    ∴∠EAB=∠EBA=36°,∠BEG=∠BGE=180°−108°2=36°,
    ∴∠DEC=108°−36°−36°=36°,
    ∴∠BDE=180°−∠BED−∠EBD=72°
    ∴∠ECD=180°−∠DEC−∠BDE=72°
    ∴BE=BD=2,
    ∵点C为线段BD的黄金分割点,
    设CD=x,
    则BC=BD−CD=2−x
    ∴x2−x=2−x2
    化简得,x2−6x+4=0,
    ∴x=3±5,
    ∵CD

    相关试卷

    浙教版九年级上册4.1 比例线段课后复习题:

    这是一份浙教版九年级上册4.1 比例线段课后复习题,文件包含浙教版九年级上册数学同步训练41比例线段答案docx、浙教版九年级上册数学同步训练41比例线段原题docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    初中数学4.1 比例线段课后练习题:

    这是一份初中数学4.1 比例线段课后练习题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map