年终活动
搜索
    上传资料 赚现金

    1.1 全等三角形的性质【八大题型】(苏科版)(教师版)

    1.1 全等三角形的性质【八大题型】(苏科版)(教师版)第1页
    1.1 全等三角形的性质【八大题型】(苏科版)(教师版)第2页
    1.1 全等三角形的性质【八大题型】(苏科版)(教师版)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版八年级上册1.2 全等三角形巩固练习

    展开

    这是一份苏科版八年级上册1.2 全等三角形巩固练习,共21页。

    TOC \ "1-3" \h \u
    \l "_Tc6012" 【题型1 全等图形的识别】 PAGEREF _Tc6012 \h 1
    \l "_Tc15996" 【题型2 将已知图形分割成几个全等图形】 PAGEREF _Tc15996 \h 3
    \l "_Tc27957" 【题型3 全等三角形对应元素的判断】 PAGEREF _Tc27957 \h 5
    \l "_Tc15955" 【题型4 利用全等三角形的性质求线段长度】 PAGEREF _Tc15955 \h 8
    \l "_Tc6601" 【题型5 利用全等三角形的性质探究线段关系】 PAGEREF _Tc6601 \h 10
    \l "_Tc9952" 【题型6 利用全等三角形的性质求角度】 PAGEREF _Tc9952 \h 12
    \l "_Tc15711" 【题型7 利用全等三角形的性质判断两直线的位置关系】 PAGEREF _Tc15711 \h 15
    \l "_Tc11270" 【题型8 利用全等三角形的性质解决面积问题】 PAGEREF _Tc11270 \h 18
    【知识点1 全等图形】
    能完全重合的图形叫做全等图形.
    两个图形全等,它们的形状相同,大小相同.
    【题型1 全等图形的识别】
    【例1】(2023春·广西南宁·八年级广西大学附属中学校考期末)下列四个图形中,属于全等图形的是( )
    A.①和②B.②和③C.①和③D.③和④
    【答案】A
    【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.
    【详解】解:①、②和④都可以完全重合,因此全等的图形是①和②.
    故选:A.
    【点睛】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.
    【变式1-1】(2023春·江苏淮安·八年级统考期中)下列说法正确的是( )
    A.两个形状相同的图形称为全等图形B.两个圆是全等图形
    C.全等图形的形状、大小都相同D.面积相等的两个三角形是全等图形
    【答案】C
    【分析】根据全等图形的定义逐项进行判断.
    【详解】解:A.两个形状相同的图形,大小不一定相等,因此这样的两个图形不一定是全等图形,故A错误;
    B.两半径相同的圆是全等图形,故B错误;
    C.全等图形的形状、大小都相同,故C正确;
    D.面积相等的两个三角形不一定形状相同,不一定是全等图形,故D错误.
    故选:C.
    【点睛】本题主要考查了全等图形的定义,解题的关键是熟练掌握形状和大小都相同的图形是全等图形.
    【变式1-2】(2023春·山东德州·八年级统考期中)下列图形中被虚线分成的两部分不是全等形的是( )
    A.等腰梯形B.正方形
    C.正六边形D.正五角星
    【答案】A
    【分析】根据全等形的定义判断即可.
    【详解】观察选项可知,选项B,C,D中的虚线把图形分成两个完全重合的两部分,而选项A的虚线把图形分成两个不能重合的三角形,故选项A这两部分不是全等图形;
    故选:A.
    【点睛】本题考查全等图形的定义,解题的关键是理解全等图形的定义,属于中考基础题.
    【变式1-3】(2023春·黑龙江鸡西·八年级鸡西市第四中学校考期中)请观察图中的5组图案,其中是全等形的是________(填序号);
    【答案】(5)
    【分析】根据全等形的定义:形状、大小相同,能够完全重合的两个图形进行判断即可.
    【详解】(1)形状、大小不相等,不是全等形;
    (2)大小不同,不是全等形;
    (3)形状,大小都不相同,不是全等形;
    (4)形状,大小都不相同,不是全等形;
    (5)形状,大小都相同,是全等形;
    故答案为:(5).
    【点睛】本题考查全等形的识别.熟练掌握形状、大小相同,能够完全重合的两个图形是全等形是解题的关键.
    【题型2 将已知图形分割成几个全等图形】
    【例2】(2023春·北京西城·八年级校考期中)作图题
    将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种(约定某种划分法经过旋转、轴对称得到的划分法与原划分法相同).
    【答案】见解析
    【分析】能够完全重合的两个图形叫做全等形,可以利用图形的轴对称性和中心对称性来分割成两个全等的图形.
    【详解】解:如图所示,(答案不唯一)
    【点睛】本题主要考查了全等图形,解题的关键是掌握全等图形的定义:形状和大小完全相同的两个图形叫全等形.
    【变式2-1】(2023春·河南三门峡·八年级统考期中)下图所示的图形分割成两个全等的图形,正确的是( )
    A.B.C.D.
    【答案】B
    【分析】直接利用全等图形的概念进而得出答案.
    【详解】解:图形分割成两个全等的图形,如图所示:
    故选B.
    【点睛】此题主要考查全等图形的识别,解题的关键是熟知全等的性质.
    【变式2-2】(2023春·湖南长沙·八年级统考期末)试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.

    【答案】见解析(第一个图答案不唯一)
    【分析】根据全等图形的定义,利用图形的对称性和互补性来分隔成两个全等的图形.
    【详解】解:第一个图形分割有如下几种:
    第二个图形的分割如下:
    【点睛】本题主要考查了学生的动手操作能力和学生的空间想象能力,牢记全等图形的定义是解题的重点.
    【变式2-3】(2023春·河南三门峡·八年级统考期末)如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形.(要求至少要画出两种方法) .

    【答案】答案见解析
    【分析】根据能够完全重合的两个图形叫做全等形画线即可.
    【详解】解:如图所示:

    故答案是:见解析
    【点睛】本题考查了全等图形的定义以及特征---定义:能够完全重合的两个图形叫做全等图形;特征:形状大小相同,能够完全重合.
    【知识点2 全等三角形的性质】
    全等三角形的对应边相等,对应角相等.(另外全等三角形的周长、面积相等,对应边上的中线、角平分线、
    高线均相等)
    【题型3 全等三角形对应元素的判断】
    【例3】(2023春·八年级课时练习)如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论错误的是( )
    A.△ABC ≌ △DEFB.∠DEF=90°C.BE=ECD.∠D=∠A
    【答案】C
    【分析】根据平移的性质,结合图形,对选项进行一一分析,选择正确答案.
    【详解】解:A、Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,则△ABC ≌ △DEF成立,故正确,不符合题意;
    B、△DEF为直角三角形,则∠DEF=90°成立,故正确,不符合题意;
    C、BE=EC不能成立,故错误,符合题意;
    D、∠D=∠A为对应角,正确,不符合题意;
    故选:C.
    【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    【变式3-1】(2023·湖北恩施·八年级统考期中)下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有( )
    A.5个B.4个C.3个D.2个
    【答案】C
    【详解】试题分析:理清全等形以及全等三角形的判定及性质,即可熟练求解此题.
    ①中能够完全重合的图形叫做全等形,正确;
    ②中全等三角形的对应边相等、对应角相等,正确;
    ③全等三角形的周长相等、面积相等,也正确;
    ④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;
    ⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;
    考点:全等三角形的判定与性质.
    【变式3-2】(2023春·八年级课时练习)如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边DE的对应边为( )
    A.BEB.ABC.CAD.BC
    【答案】B
    【分析】观察图形,找到与DE长度相等的线段即可.
    【详解】观察图形可知:BE>AB,BE>BC,∴BE和AC是对应边,显然BD和BC是对应边,∴DE 和AB是对应边.
    故选B.
    【点睛】本题考查了全等三角形的定义.注意全等的规范书写方式,要求各对应点的位置一致.
    【变式3-3】(2023春·八年级课时练习)如图,如果△ABC≌△CDA,∠BAC=∠DCA,∠B=∠D,对于以下结论:
    ①AB与CD是对应边;②AC与CA是对应边;③点A与点A是对应顶点;④点C与点C是对应顶点;⑤∠ACB与∠CAD是对应角,
    其中正确的是( )
    A.2个B.3个C.4个D.5个
    【答案】B
    【分析】由全等三角形的对应边相等、对应角相等对以下结论进行判定.
    【详解】解:△ABC≌△CDA,∠BAC=∠DCA,∠B=∠D.
    ①AB与CD是对应边.故①正确;
    ②AC与CA是对应边.故②正确;
    ③点A与点C是对应顶点.故③错误;
    ④点C与点A是对应顶点.故④错误;
    ⑤∠ACB与∠CAD是对应角.故⑤正确.
    综上所述,正确的结论是①②⑤,共有3个.
    故选B.
    【点睛】本题考查了全等三角形的性质.解题时应注重识别全等三角形中的对应边、对应角.
    【题型4 利用全等三角形的性质求线段长度】
    【例4】(2023春·辽宁大连·八年级校联考期中)如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )
    A.1cmB.2cmC.3cmD.4cm
    【答案】D
    【分析】根据全等三角形的性质可得BE=AB,BC=BD,进而得到BE=3cm,BC=7cm,再根据线段的和差关系进行计算即可.
    【详解】解:∵△ABC≌△EBD,
    ∴BE=AB,BC=BD,
    ∵AB=3cm,BD=7cm,
    ∴BE=3cm,BC=7cm,
    ∴CE=7cm-3cm=4cm,
    故选D.
    【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.
    【变式4-1】(2023春·江苏南京·八年级统考期中)已知△ABC三边的长分别为3,5,7,△DEF三边的长分别为3,7,2x-1,若这两个三角形全等,则x= ______.
    【答案】3
    【分析】利用全等的性质列式计算即可.
    【详解】解:∵△ABC与△DEF全等,
    ∴2x-1=5,解得:x=3,
    故答案为:3.
    【点睛】本题主要考查三角形全等的性质,能够通过全等得到对应边相等并列式是解题关键.
    【变式4-2】(2023春·湖南岳阳·八年级校考期中)如图,△ABC≌△DEC,点B、C、D在同一直线上,且BD=12,AC=7,则CE长为____________.
    【答案】5
    【分析】由△ABC≌△DEC可得出BC=EC,AC=DC,再根据BC=BD-DC求解即可.
    【详解】解:∵ △ABC≌△DEC,
    ∴ BC=EC,AC=DC,
    ∵ BD=12,AC=7,
    ∴ CE=BC=BD-DC=BD-AC=12-7=5.
    故答案为:5.
    【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.
    【变式4-3】(2023春·四川泸州·八年级校考期中)如图,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则BC的长为( )
    A.8B.7C.6D.5
    【答案】B
    【分析】根据全等三角形的对应边相等得到DA=DB,根据三角形的周长公式计算即可.
    【详解】解:∵△ADE≌△BDE,
    ∴DA=DB,
    △ADC的周长=AC+CD+AD=AC+CD+BD=AC+BC=12,又AC=5,
    ∴BC=7,
    故选:B.
    【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.
    【题型5 利用全等三角形的性质探究线段关系】
    【例5】(2023春·山东滨州·八年级统考期中)如图,A,D,E三点在同一直线上,且△BAD≌△ACE,试说明:
    (1)BD=DE+CE;
    (2)△ABD满足什么条件时,BD∥CE.
    【答案】(1)证明见解析;(2)∠ADB=90°.
    【分析】(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;
    (2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.
    【详解】解:(1)∵△BAD≌△ACE,
    ∴BD=AE,AD=CE,
    ∴BD=AE=AD+DE=CE+DE,
    即BD=DE+CE;
    (2)△ABD满足∠ADB=90°时,BD∥CE,
    理由是:∵△BAD≌△ACE,
    ∴∠E=∠ADB=90°,
    ∴∠BDE=180°−90°=90°=∠E,
    ∴BD∥CE.
    【点睛】本题考查了全等三角形的性质和平行线的判定等的应用,关键是通过三角形全等得出正确的结论,通过做此题培养了学生分析问题的能力.
    【变式5-1】(2023春·北京·八年级101中学校考期中)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( ).
    A.∠B=∠CB.AD=AEC.AB=2BDD.BD=CE
    【答案】C
    【详解】∵△ABE≌△ACD,
    ∴∠B=∠C,AD=AE,AB=AC,
    ∴AB-AD=AC-AE,
    即:BD=CE,
    ∴选项A、B、D均正确,只有C中结论无法证明是成立的.
    故选C.
    【变式5-2】(2023春·河北唐山·八年级校联考期中)如图,△ACE≌△DBF,AC=6,BC=4.
    (1)求证:AE∥DF;
    (2)求AD的长度.
    【答案】(1)证明见解析(2)8
    【分析】(1)根据全等三角形的性质可得∠A=∠D,再根据内错角相等两直线平行可得AE∥DF;
    (2)根据全等三角形的性质得出AC=DB,进而解答即可.
    【详解】(1)∵△ACE≌△DBF,
    ∴∠A=∠D,
    ∴AE∥DF;
    (2)∵△ACE≌△DBF,
    ∴AC=DB,
    ∴AB=DC=AC﹣BC=6﹣4=2,
    ∴AD=AC+CD=6+2=8.
    【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等;全等三角形的对应角相等.
    【变式5-3】(2023春·全国·八年级专题练习)如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.
    (1)试说明AB=CD.
    (2)求线段AB的长.
    【答案】(1)见解析;(2)2.
    【分析】(1)由△ACF≌△DBE,得AC=DB,故AC﹣BC=DB﹣BC;(2)由(1)结论可得AB=12(AD﹣BC).
    【详解】解:(1)∵△ACF≌△DBE,
    ∴AC=DB,
    ∴AC﹣BC=DB﹣BC,
    即AB=CD
    (2)∵AD=11,BC=7,
    ∴AB=12(AD﹣BC)=12×(11﹣7)=2
    即AB=2
    【点睛】本题考核知识点:全等三角形性质. 解题关键点:熟记全等三角形性质.
    【题型6 利用全等三角形的性质求角度】
    【例6】(2023春·安徽安庆·八年级校联考期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是( )
    A.30°B.50°C.44°D.34°
    【答案】D
    【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BAC,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质求出∠BCD,再求出∠B,然后利用全等三角形的性质求∠E即可.
    【详解】解:∵CD平分∠BCA,
    ∴∠ACD=∠BCD=12∠BAC,
    ∵△ABC≌△DEF,
    ∴∠D=∠A=30°,∠B=∠E,
    ∵∠CGF=∠D+∠BCD,
    ∴∠BCD=∠CGF-∠D=58°,
    ∴∠BCA=116°,
    ∴∠B=180°-30°-116°=34°,
    ∴∠E=∠B=34°,
    故选:D.
    【点睛】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.
    【变式6-1】(2023春·广东江门·八年级统考期中)已知图中的两个三角形全等,则∠α的度数是( )
    A.72°B.60°C.58°D.50°
    【答案】D
    【分析】根据全等三角形对应角相等可知∠α是a、c边的夹角,可得对应角,则∠α=50°,从而可得答案.
    【详解】解:∵如图,两个三角形全等,∠α与50°的角是a、c边的夹角,
    ∴∠α的度数是50°.
    故选:D.
    【点睛】本题考查的是全等三角形的性质,掌握“全等三角形的对应角相等”是解本题的关键.
    【变式6-2】(2023春·江苏南通·八年级启东市长江中学校考期中)如图,已知△ABC≌△DBE,点D恰好在AC的延长线上,∠DBE=20°,∠BDE=41°.则∠BCD的度数是_____°.
    【答案】61
    【分析】根据三角形内角和定理求出∠E,根据全等三角形的性质求出∠ACB,根据补角的概念(如果两个角的和是一个平角,那么这两个角叫互为补角)计算,得到答案.
    【详解】解:在△BDE中,∠DBE=20°,∠BDE=41°,
    ∴∠E=180°-∠DBE-∠BDE=119°,
    ∵△ABC≌△DBE,
    ∴∠ACB=∠E=119°,
    ∴∠BCD=180°-119°=61°,
    故答案为:61.
    【点睛】本题考查的是全等三角形的性质的应用,掌握全等三角形的对应角相等是解题的关键.
    【变式6-3】(2023春·广东梅州·八年级校考开学考试)如图,△ABC≌△A1B1C1,若∠A=50°,∠A1B1C=45°,∠ACB1=65°,则∠α的度数是( )
    A.15°B.25°C.20°D.10°
    【答案】C
    【分析】根据全等三角形的性质得出∠ABC=∠A1B1C=45°,根据三角形内角和定理得出∠ABC=85°,进而即可求解.
    【详解】解:∵△ABC≌△A1B1C1,
    ∴∠ABC=∠A1B1C=45°,
    在△ABC中,∠ACB=180°-∠A-∠ABC=180°-50°-45°=85°,
    ∴∠α=∠ACB-∠ACB1=85°-65°=20°,
    故选:C.
    【点睛】本题考查了全等三角形的性质,三角形内角和定理,掌握全等三角形的性质是解题的关键.
    【题型7 利用全等三角形的性质判断两直线的位置关系】
    【例7】(2023春·全国·八年级期末)如图,点A,O,B在同一直线上,且△ACO≌△BDO.证明:
    (1)点C,O,D在同一直线上;
    (2)AC∥BD.
    【答案】(1)见解析;
    (2)见解析.
    【分析】(1)由全等三角形的性质可知∠AOC=∠BOD,由题意可知∠AOD+∠DOB=180°,故此可求得∠AOD+∠AOC=180°,从而可证明点C,O,D在同一直线上;
    (2)由全等三角形的性质可知∠A=∠B,由平行线的判定定理可证明AC∥BD.
    【详解】(1)证明:∵△ACO≌△BDO,
    ∴∠AOC=∠BOD.
    ∵点A,O,B在同一直线上,
    ∵∠AOD+∠DOB=180°,
    ∴∠AOD+∠AOC=180°,,
    ∴点C,O,D在同一直线上;
    (2)证明:∵△ACO≌△BDO,
    ∴∠A=∠B,
    ∴AC∥BD
    【点睛】本题主要考查的是全等三角形的性质、平行线的判定,掌握全等三角形的性质、平行线的判定定理是解题的关键.
    【变式7-1】(2023·全国·八年级专题练习)如图,△ABC≌△DEF,∠A=33°,∠E=57°,CE=5cm.
    (1)求线段BF的长;
    (2)试判断DF与BE的位置关系,并说明理由.
    【答案】(1)5cm;(2)见解析
    【分析】(1)根据全等三角形的性质得出BC=EF,求出EC=BF即可;
    (2) 根据全等三角形的性质可得∠A=∠D=33°,根据三角形内角和定理求出∠DFE的度数,即可得出答案.
    【详解】1∵△ABC≌△DEF,
    ∴BC=EF,
    ∴BC+CF=EF+CF,
    即BF=CE=5cm;
    2∵△ABC≌△DEF,∠A=33°,
    ∴∠A=∠D=33°,
    ∵∠D+∠E+∠DFE=180°,∠E=57°,
    ∴∠DFE=180°-57°-33°=90°,
    ∴DF⊥BE.
    【点睛】本题考查了全等三角形的性质和三角形内角和定理,能灵活运用全等三角形的性质进行推理是解此题的关键.
    【变式7-2】(2023春·河北石家庄·八年级统考阶段练习)如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上,判断AD与BC的位置关系.
    【答案】AD//BC
    【分析】根据全等三角形的性质得出∠ADF=∠CBE,进而得出∠ADB=∠CBD,利用平行线判定解答即可.
    【详解】解:AD与BC的位置关系为AD//BC.
    ∵ΔADF≅ΔCBE,
    ∴∠ADF=∠CBE.
    又∵∠ADF+∠ADB=180°,∠CBE+∠CBD=180°,
    ∴∠ADB=∠CBD.
    ∴AD//BC.
    【点睛】本题考查全等三角形的性质,解题关键是根据全等三角形的性质得出∠ADF=∠CBE.
    【变式7-3】(2023春·山东枣庄·八年级校考期末)如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.
    【答案】见解析.
    【分析】先利用垂直定义得到∠BAE=90°,在利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.
    【详解】证明:∵AE⊥AB,
    ∴∠BAE=90°,
    ∵△ACE≌△AFB,
    ∴∠CAE=∠BAF,∠ACE=∠F,
    ∴∠CAB+∠BAE=∠BAC+∠CAF,
    ∴∠CAF=∠BAE=90°,
    而∠ACE=∠F,
    ∴∠FMC=∠CAF=90°,
    ∴CE⊥BF.
    【点睛】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.
    【题型8 利用全等三角形的性质解决面积问题】
    【例8】(2023春·重庆九龙坡·八年级重庆市育才中学校考期中) 如图,若△ABC≌△EBD,且BD=4,AB=8,则阴影部分的面积S△ACE=______.
    【答案】8
    【详解】解:∵△ABC≌△EBD,BD=4,AB=8,
    ∴AB=EB=8,BC=BD=4,
    ∴EC=EB-BC=8-4=4.
    ∴S△ACE=12EC⋅AB=12×4×4=8.
    故答案为:8.
    【点睛】根据“全等三角形的对应边相等”推知AB=EB=8,BC=BD=4,然后结合三角形的面积公式作答.
    本题主要考查了全等三角形的性质,全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.
    【变式8-1】(2023春·山东德州·八年级统考期中)已知ΔABC≌ΔDEF,BC=EF=5cm,ΔABC的面积是20cm2,那么ΔDEF中EF边上的高是_ _cm.
    【答案】8
    【分析】此题考查了全等三角形的性质,熟练掌握全等三角形的性质是解本题的关键.
    利用全等三角形对应边相等,以及对应边上的高也相等,利用面积法求出EF边上的高即可.
    【详解】解:∵△ABC≌△DEF,BC=EF=5cm,△ABC的面积是20cm2,
    ∴12BC⋅h=20,即h=8cm,
    则△DEF中EF边上的高是8cm,
    故答案为8.
    【变式8-2】(2023春·重庆九龙坡·八年级重庆市育才中学校考期中)如图,D、A、E三点在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且△ABD≌△CAE,AC=4.
    (1)求∠BAC的度数;
    (2)求△ABC的面积.
    【答案】(1)90°
    (2)8
    【分析】(1)根据垂直的定义得到∠D=90°,求得∠DBA+∠BAD=90°,根据全等三角形的性质得到∠DBA=∠CAE,等量代换即可得到结论;
    (2)根据全等三角形的性质得AC=AB=4,再根据三角形的面积求出答案.
    【详解】(1)解:∵BD⊥DE,
    ∴∠D=90°,
    ∴∠DBA+∠BAD=90°,
    ∵△ABD≌△CAE,
    ∴∠DBA=∠CAE
    ∴∠BAD+∠CAE=90°,
    ∴∠BAC=90°;
    (2)解:∵△ABD≌△CAE,
    ∴AC=AB=4,
    又∵∠BAC=90°
    ∴△ABC是直角三角形,
    ∴△ABC的面积=4×4÷2=8.
    【点睛】本题考查的是全等三角形的性质、三角形的面积公式,证得△ABC是直角三角形是解决本题的关键.
    【变式8-3】(2023春·广西南宁·八年级广西大学附属中学校考期末)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置AB=10,DO=4,平移距离为5,则阴影部分(即四边形DOCF)面积为______.
    【答案】40
    【详解】解:∵△ABC≌△DEF,
    ∴S△ABC=S△DEF,DE=AB=10,
    ∴S△ABC-S△OEC=S△DEF-S△OEC,OE=DE-DO=6,
    ∴四边形DOCF的面积=S梯形ABEO=12×(6+10)×5=40,
    故答案为:40.
    【点睛】根据全等三角形的性质得到S△ABC=S△DEF,DE=AB=10,根据梯形的面积公式计算,得到答案.
    本题考查的是全等三角形的性质、梯形的面积计算,掌握全等三角形的对应边相等是解题的关键.

    相关试卷

    苏科版八年级上册6.1 函数精练:

    这是一份苏科版八年级上册6.1 函数精练,共27页。

    初中苏科版4.3 实数一课一练:

    这是一份初中苏科版4.3 实数一课一练,共29页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map