


重庆南开中学2023年数学八年级第一学期期末经典模拟试题【含解析】
展开
这是一份重庆南开中学2023年数学八年级第一学期期末经典模拟试题【含解析】,共17页。试卷主要包含了下列命题,是真命题的是,计算等内容,欢迎下载使用。
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.若m+=5,则m2+的结果是( )
A.23B.8C.3D.7
2.小王每天记忆10个英语单词,x天后他记忆的单词总量为y个,则y与x之间的函数关系式是( )
A.y=10+xB.y=10xC.y=100xD.y=10x+10
3.一个多边形的每个内角都是108°,那么这个多边形是( )
A.五边形B.六边形C.七边形D.八边形
4.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为( )
A.75°B.60°C.45°D.40°
5.若am=8,an=16,则am+n的值为( )
A.32B.64C.128D.256
6.下列命题,是真命题的是( )
A.三角形的外角和为
B.三角形的一个外角大于任何一个和它不相邻的内角.
C.两条直线被第三条直线所截,同位角相等.
D.垂直于同一直线的两直线互相垂直.
7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BCB.AB=DC,AD=BC
C.AO=CO,BO=DOD.AB∥DC,AD=BC
8.计算(-2b)3的结果是( )
A.B.C.D.
9.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为( )
A.+=B. -=C. +1=﹣D. +1=+
10.正五边形ABCDE中,∠BEC的度数为( )
A.18°B.30°C.36°D.72°
11.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
12.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.对于分式,当时,分式的值为零,则__________.
14.如图,在△ABC中,AB=3,AC=4,则BC边上的中线AD的长x取值范围是___;
15.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.
16.点A(5,﹣1)关于x轴对称的点的坐标是_____.
17.已知多边形的内角和等于外角和的三倍,则边数为___________.
18.在函数中,自变量x的取值范围是___.
三、解答题(共78分)
19.(8分)如图,在中,,,且,求的度数.
20.(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人滋养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了.部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.
(1)这次共调查的学生人数是 人,
(2)所调查学生读书本数的众数是___本,中位数是__本
(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?
21.(8分)如图,在平面直角坐标系中,△ABC的各顶点都在格点上.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出A1,B1两点的坐标;
(2)若△A1B1C1内有一点P,点P到A1C1,B1C1的距离都相等,则点P在( )
A.∠A1C1B1的平分线上 B.A1B1的高线上
C.A1B1的中线上 D.无法判断
22.(10分)如图1所示,在△ABC中,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,连接AM、AN.
(1)求证:△AMN的周长=BC;
(2)若AB=AC,∠BAC=120°,试判断△AMN的形状,并证明你的结论;
(3)若∠C=45°,AC=3,BC=9,如图2所示,求MN的长.
23.(10分)分解因式:
(1)﹣3a2+6ab﹣3b2;
(2)9a2(x﹣y)+4b2(y﹣x).
24.(10分)如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.
(1)若∠BAD=40°,求∠EDC的度数;
(2)若∠EDC=15°,求∠BAD的度数;
(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.
25.(12分)化简分式:,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.
26.如图,在中,D是的中点,,垂足分别是.
求证:AD平分.
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】因为m+=5,所以m2+=(m+)2﹣2=25﹣2=23,故选A.
2、B
【分析】根据总数=每份数×份数列式即可得答案.
【详解】∵每天记忆10个英语单词,
∴x天后他记忆的单词总量y=10x,
故选:B.
【点睛】
本题考查根据实际问题列正比例函数关系式,找到所求量的等量关系是解决问题的关键.
3、A
【分析】根据题意,计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.
【详解】解:∵多边形的每个内角都是108°,
∴每个外角是180°﹣108°=72°,
∴这个多边形的边数是360°÷72°=5,
∴这个多边形是五边形,
故选:A.
【点睛】
本题考查了多边形外角和是360°这一知识点,根据题意求出,每个外角的度数是解决本题的关键。
4、C
【分析】利用三角形内角和定理求解即可.
【详解】因为三角形内角和为180°,且∠A = 60°,∠B = 75°,所以∠C=180°–60°–75°=45°.
【点睛】
三角形内角和定理是常考的知识点.
5、C
【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.
【详解】当am=8,an=16时,,
故选C.
【点睛】
计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
6、B
【分析】根据三角形的性质,平行与垂直的性质逐一判断即可.
【详解】解:A.三角形的外角和为,故错误;
B.三角形一个外角等于与它不相邻的两个内角的和,所以它大于任何一个和它不相邻的内角,故正确;
C.两条平行线被第三条直线所截,同位角相等,故错误;
D.垂直于同一直线的两直线互相平行,故错误.
故选:B.
【点睛】
本题通过判断命题的真假考查了几何基本图形的性质定理,理解掌握相关性质是解答关键.
7、D
【解析】根据平行四边形判定定理进行判断:
A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;
B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;
C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;
D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.
故选D.
考点:平行四边形的判定.
8、A
【解析】直接利用积的乘方运算法则计算得出答案.
【详解】.故选A.
【点睛】
此题主要考查了积的乘方运算,正确将原式变形是解题关键.
9、C
【分析】设原计划速度为x千米/小时,根据“一运送物资车开往距离出发地180千米的目的地”,则原计划的时间为:,根据“出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶”,则实际的时间为: +1,根据“实际比原计划提前40分钟到达目的地”,列出关于x的分式方程,即可得到答案.
【详解】设原计划速度为x千米/小时,
根据题意得:
原计划的时间为:,
实际的时间为: +1,
∵实际比原计划提前40分钟到达目的地,
∴ +1=﹣,
故选C.
【点睛】
本题考查了由实际问题抽象出分式方程,正确找出等量关系,列出分式方程是解题的关键.
10、C
【分析】
根据正五边形的性质和内角和为540°,得到△ABE≌△DCE,先求出∠BEA和∠CED的度数,再求∠BEC即可.
【详解】
解:根据正五边形的性质可得AB=AE=CD=DE,∠BAE=∠CDE=108°,
∴△ABE≌△DCE,
∴∠BEA=∠CED=(180°﹣108°)=36°,
∴∠BEC=108°-36°-36°=36°,
故选:C.
【点睛】
本题考查了正多边形的性质和内角和,全等三角形的判定,等腰三角形的性质,证明△ABE≌△DCE是解题关键.
11、D
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
B、是轴对称图形,不是中心对称图形,故本选项不符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、既是轴对称图形又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了轴对称图形与中心对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
12、C
【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.
【详解】①当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,
∴,
②当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,,
∴,
,
,
,
③当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,,
∴,
综上所述:与的函数表达式为:
.
故答案为C.
【点睛】
本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.
二、填空题(每题4分,共24分)
13、-1且.
【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.
【详解】解:∵分式,当时,分式的值为零,
∴且,
∴,且
故答案为:-1且.
【点睛】
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.
14、0.1
相关试卷
这是一份重庆南开融侨中学2023年八年级数学第一学期期末调研模拟试题【含解析】,共19页。试卷主要包含了不等式1+x≥2﹣3x的解是,下列线段长能构成三角形的是,下列各式是分式的是,下列说法正确的是等内容,欢迎下载使用。
这是一份重庆南开中学2023年八年级数学第一学期期末教学质量检测模拟试题【含解析】,共18页。试卷主要包含了计算 的结果为等内容,欢迎下载使用。
这是一份重庆南开(融侨)中学2023-2024学年八年级数学第一学期期末联考模拟试题【含解析】,共22页。试卷主要包含了点M,下列计算中正确的是,下列计算正确的是,下列关于的叙述错误的是等内容,欢迎下载使用。
