重庆市巴南中学2023-2024学年数学八年级第一学期期末统考试题【含解析】
展开
这是一份重庆市巴南中学2023-2024学年数学八年级第一学期期末统考试题【含解析】,共17页。试卷主要包含了甲、乙两车从城出发匀速行驶至城,若六边形的最大内角为度,则必有,对一组数据等内容,欢迎下载使用。
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.分式有意义时x的取值范围是( )
A.x≠1B.x>1C.x≥1D.x<1
2.已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是( )
A.3和11B.7和7C.6和8或7和7D.3和11或7和7
3.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:
①,两城相距千米;
②乙车比甲车晚出发小时,却早到小时;
③乙车出发后小时追上甲车;
④当甲、乙两车相距千米时,或
其中正确的结论有( )
A.个B.个C.个D.个
4.若六边形的最大内角为度,则必有( )
A.B.C.D.
5.对一组数据:2,1,3,2,3分析错误的是( )
A.平均数是2.2B.方差是4C.众数是3和2D.中位数是2
6.如图,两直线和在同一坐标系内图象的位置可能是( )
A.B.
C.D.
7.已知三角形两边长分别为5cm和16cm,则下列线段中能作为该三角形第三边的是( )
A.24cmB.15cmC.11cmD.8cm
8.下列长度的线段中,不能构成直角三角形的是( )
A.9,12,15B.14,48,50
C.,,D.1,2,
9.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为( )
A.B.C.D.
10.已知不等式x+1≥0,其解集在数轴上表示正确的是( )
A.B.
C.D.
11.如果分式有意义,则x的取值范围是( )
A.x<﹣3B.x>﹣3C.x≠﹣3D.x=﹣3
12.下列四组数据,能作为直角三角形的三边长的是( )
A.2、4、6B.2、3、4C.5、7、12D.8、15、17
二、填空题(每题4分,共24分)
13.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
14.如图,这是一个供滑板爱好者使用的型池的示意图,该型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为的半圆,其边缘,点在上,,一滑板爱好者从点滑到点,则他滑行的最短距离约为_________.(边缘部分的厚度忽略不计)
15.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为______.
16.当__________时,分式的值等于零.
17.已知有理数,我们把称为的差倒数,如2的差倒数为,-1的差倒数,已知,是的差倒数,是的差倒数,是的差倒数…,依此类推,则______.
18.函数的定义域为______________.
三、解答题(共78分)
19.(8分)如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.
20.(8分)如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.
21.(8分)正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:
(1)k的值;
(2)两条直线与x轴围成的三角形的面积.
22.(10分)如图,点、都在线段上,且,,,与相交于点.
(1)求证:;
(2)若,,求的长.
23.(10分)(1)化简
(2)解方程
(3)分解因式
24.(10分)先化简,再求值其中a=1,b=1;
25.(12分)解方程:
26.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】试题解析:根据题意得:x−1≠0,解得:x≠1.
故选A.
点睛:分式有意义的条件:分母不为零.
2、C
【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.
【详解】解:等腰三角形的周长是22.
当8为腰时,它的底边长,,能构成等腰三角形.
当8为底时,它的腰长,,能构成等腰三角形.
即它两边的长度分别是6和8或7和7.
故选:C.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.
3、C
【分析】由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t,可得出答案.
【详解】图象可知、两城市之间的距离为,甲行驶的时间为小时,而乙是在甲出发小时后出发的,且用时小时,即比甲早到小时,故①②都正确;
设甲车离开城的距离与的关系式为,
把代入可求得,
,
设乙车离开城的距离与的关系式为,
把和代入可得,解得,
,
令可得:,解得,
即甲、乙两直线的交点横坐标为,
此时乙出发时间为小时,即乙车出发小时后追上甲车,故③正确;
令,可得,即,
当时,可解得,
当时,可解得,
又当时,,此时乙还没出发,
当时,乙到达城,;
综上可知当的值为或或或时,两车相距千米,故④不正确;
综上可知正确的有①②③共三个,
故选:C.
【点睛】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.
4、C
【分析】根据三角形的内角和和多边形的内角和即可得出答案.
【详解】∵六边形可分为4个三角形,每个三角形的内角和180°
∴m
相关试卷
这是一份重庆市巴南中学2023年数学八年级第一学期期末检测模拟试题【含解析】,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,是无理数的是,下列运算中,不正确的是等内容,欢迎下载使用。
这是一份重庆市巴南中学2023-2024学年数学八年级第一学期期末学业水平测试试题【含解析】,共22页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,求证,不等式组的整数解的个数是,下列命题是真命题的是,化简的结果是,下列变形从左到右一定正确的是等内容,欢迎下载使用。
这是一份重庆市巴南中学2023年八年级数学第一学期期末监测试题【含解析】,共23页。试卷主要包含了已知,在平面直角坐标系中,点A等内容,欢迎下载使用。