重庆市第七十一中学2023年数学八上期末综合测试试题【含解析】
展开这是一份重庆市第七十一中学2023年数学八上期末综合测试试题【含解析】,共21页。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为( )
A.30°B.34°C.36°D.40°
2.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是( )
A.出租车起步价是10元
B.在3千米内只收起步价
C.超过3千米部分(x>3)每千米收3元
D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4
3.如图,是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管、、……添加的这些钢管的长度都与的长度相等.如果,那么添加这样的钢管的根数最多是( )
A.7根B.8根C.9根D.10根
4.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD
5.在-,-π,0,3.14, 0.1010010001,-3中,无理数的个数有 ( )
A.1个B.2个C.3个D.4个
6.如图,已知△ABC与△ADE都是以A为直角顶点的等腰直角三角形,△ADE绕顶点A旋转,连接BD,CE.以下四个结论:
①BD=CE;②∠AEC+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中结论正确的个数是( )
A.1B.2C.3D.4
7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是( )
A.1.5B.2.5C.D.3
8.关于的不等式的解集是,则的取值范围是( )
A.B. C. D.
9.如果下列各组数是三角形的三边,则能组成直角三角形的是( )
A.B.C.D.
10.如图,轮船从处以每小时海里的速度沿南偏东方向匀速航行,在处观测灯塔位于南偏东方向上.轮船航行半小时到达处,在处观测灯塔位于北偏东方向上,则处与灯塔的距离是( )
A.海里B.海里C.海里D.海里
二、填空题(每小题3分,共24分)
11.已知三角形的三边分别为a,b,c,其中a,b满足,那么这个三角形的第三边c的取值范围是____.
12.当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.
13.已知平行四边形中,,,,则这个平行四边形的面积为_____.
14.当x______时,分式无意义.
15.如图,在中,,,过点作,连接,过点作于点,若,的面积为6,则的长为____________.
16.如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为_____.
17.如图,△ABC中,∠ACB=90°,AC=8,BC=6,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、ND,则图中阴影部分的面积之和等于_____.
18.若y=1是方程+=的增根,则m=____.
三、解答题(共66分)
19.(10分)在平面直角坐标系中的位置如图所示.
(1)作出关于轴对称的,并写出各顶点的坐标;
(2)将向右平移6个单位,作出平移后的并写出各顶点的坐标;
(3)观察和,它们是否关于某直线对称?若是,请用粗线条画出对称轴.
20.(6分)先化简,再求值:其中
21.(6分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.
(1)求证:四边形是平行四边形.
(2)当时,若,,求的长.
22.(8分)运用乘法公式计算
(1)
(2)
23.(8分)计算:14+(3.14) 0+÷
24.(8分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.
(1)求甲、乙两种货车每辆车可装多少件帐篷;
(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.
25.(10分)如图,△ABC中,AB=AC,∠A=50°,DE是腰的垂直平分线.求∠DBC的度数.
26.(10分)解下列分式方程:
(1)
(2).
参考答案
一、选择题(每小题3分,共30分)
1、B
【解析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.
【详解】解:∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选:B.
【点睛】
本题考查了等腰三角形的性质,三角形外角的性质,熟练掌握等腰三角形的两个底角相等和三角形的外角等于不相邻两个内角的和是解答本题的关键.
2、A
【分析】根据图象信息一一判断即可解决问题.
【详解】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,
设超过3千米的函数解析式为y=kx+b,则,解得,
∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,
超过3千米部分(x>3)每千米收2元,
故A、B、D正确,C错误,
故选C.
【点睛】
此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题的关键,属于中考常考题.
3、B
【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.
【详解】∵添加的钢管长度都与相等, ,
∴∠FDE=∠DFE=20,
…
从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10,第二个是20,第三个是30,四个是40,五个是50,六个是60,七个是70,八个是80,九个是90就不存在了,
所以一共有8个,故添加这样的钢管的根数最多8根
故选B.
【点睛】
此题主要考查等腰三角形的性质,解题的关键是根据等边对等角求出角度,发现规律进行求解.
4、A
【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.
【详解】解:由题意,得∠ABC=∠BAD,AB=BA,
A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;
B、在△ABC与△BAD中, ,△ABC≌△BAD(ASA),故B正确;
C、在△ABC与△BAD中, ,△ABC≌△BAD(AAS),故C正确;
D、在△ABC与△BAD中, ,△ABC≌△BAD(SAS),故D正确;
故选:A.
【点睛】
本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
5、A
【解析】根据无理数的定义进行求解.
【详解】解:无理数有:−π,共1个.
故选:A.
【点睛】
本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
6、C
【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠CFG=90°,进而得出结论; ④由∠BAE+∠EAD+∠DAC+∠BAC=360,即可得出结论.
【详解】①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,
而∠ACE与∠AEC不一定相等,∴②错误;
③设BD与CE、AC的交点分别为F、G,
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∠AGB=∠FGC,
∵∠CAB=90°,
∴∠BAG=∠CFG=90°,
∴BD⊥CE,∴③正确;
④∵∠BAE+∠EAD+∠DAC+∠BAC=360,
∠EAD=∠BAC=90°,
∴∠BAE +∠DAC =360-90°-90°=180,∴④正确;
综上,①③④正确,共3个.
故选:C.
【点睛】
本题考查了等腰直角三角形的性质、旋转变换的性质、全等三角形的判定和性质,解题的关键是灵活运用这些知识解决问题.
7、B
【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE中,由勾股定理得出方程,解方程即可.
【详解】解:连接DE,如图所示,
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB==5,
∵AD=AC=3,AF⊥CD,
∴DF=CF,
∴CE=DE,BD=AB-AD=2,
在△ADE和△ACE中,
,
∴△ADE≌△ACE(SSS),
∴∠ADE=∠ACE=90°,
∴∠BDE=90°,
设CE=DE=x,则BE=4-x,
在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,
即x2+22=(4-x)2,
解得:x=1.5;
∴CE=1.5;
∴BE=4-1.5=2.5
故选:B.
【点睛】
本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键.
8、C
【分析】根据不等式的基本性质求解即可.
【详解】∵关于的不等式的解集是,
∴,
解得:,
故选:C.
【点睛】
本题主要考查了不等式的基本性质,解题的关键是熟记不等式的基本性质.
9、A
【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
【详解】A. ∵1 + =2,
∴此三角形是直角三角形,正确;
B. ∵1+3≠4,
∴此三角形不是直角三角形,不符合题意;
C. ∵2+3≠6,
∴此三角形不是直角三角形,不合题意;
D. ∵4+5≠6,
∴此三角形不是直角三角形,不合题意.
故选:A.
【点睛】
此题考查勾股定理的逆定理,解题关键在于掌握计算公式.
10、D
【分析】根据题中所给信息,求出△ABC是等腰直角三角形,然后根据已知数据得出AC=BC的值即可.
【详解】解:根据题意,∠BCD=30°,
∵∠ACD=60°,
∴∠ACB=30°+60°=90°,
∴∠CBA=75°-30°=45°,
∴△ABC是等腰直角三角形,
∵BC=50×0.5=25(海里),
∴AC=BC=25(海里),
故答案为:D.
【点睛】
本题考查了等腰直角三角形与方位角,根据方位角求出三角形各角的度数是解题的关键.
二、填空题(每小题3分,共24分)
11、
【解析】根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.
【详解】∵,
∴=0,b-4=0,
∴a=3,b=4,
∴4-3
故答案是:.
【点睛】
考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.
12、3
【分析】先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.
【详解】因为当时,分式无意义,
所以,
解得:,
因为当时,分式的值为零,
所以,
解得:,
所以
故答案为:3.
【点睛】
本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.
13、40
【分析】作高线CE,利用30角所对直角边等于斜边的一半求得高CE,再运用平行四边形的面积公式计算即可.
【详解】过C作CE⊥AB于E,
在Rt△CBE中,∠B=30,,
∴,
.
故答案为:.
【点睛】
本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用 “30角所对直角边等于斜边的一半”求解.
14、
【解析】由题意得:2x-7=0,解得:x=,
故答案为.
【点睛】本题考查的是分式无意义,解题的关键是明确分式无意义的条件是分母等于0.
15、
【分析】过点A作AH⊥DC交DC的延长线于点H,作AF⊥BC于点F,通过等腰直角三角形的性质和关系得出,从而有 ,然后证明四边形AFCH是正方形,则有,进而通过勾股定理得出,然后利用的面积为6即可求出BC的长度.
【详解】过点A作AH⊥DC交DC的延长线于点H,作AF⊥BC于点F
∵,,AF⊥BC
∵AF⊥BC,
∵
∵AF⊥BC,,AH⊥DC,
∴四边形AFCH是正方形
故答案为:.
【点睛】
本题主要考查等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质,掌握等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质是解题的关键,难点在于如何找到BC与CD之间的关系.
16、8或2或2
【详解】分三种情况计算:
(1)当AE=AF=4时,如图:
∴S△AEF=AE•AF=×4×4=8;
(2)当AE=EF=4时,如图:
则BE=5﹣4=1,
BF=,
∴S△AEF=•AE•BF=×4×=2;
(3)当AE=EF=4时,如图:
则DE=7﹣4=3,
DF=,
∴S△AEF=AE•DF=×4×=2;
17、1
【分析】如图将△FAE绕点A顺时针旋转90°得到△KAB.首先证明S△ABK=S△ABC=S△AFE,同理可证S△BDN=S△ABC,推出S△AEF+S△BDN=2•S△ABC,由此即可解决问题.
【详解】如图将△FAE绕点A顺时针旋转90°得到△KAB.
∵∠FAC=∠EAB=90°,
∴∠FAE+∠CAB=180°,
∵∠FAE=∠KAB,
∴∠KAB+∠CAB=180°,
∴C、A、K共线,
∵AF=AK=AC,
∴S△ABK=S△ABC=S△AFE,
同理可证S△BDN=S△ABC,
∴S△AEF+S△BDN=2•S△ABC=2××6×8=1,
故答案为:1.
【点睛】
本题考查的是勾股定理、正方形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
18、-1.
【解析】增根是化为整式方程后产生的不适合分式方程的根.先去分母,然后把y=1代入代入整式方程,即可算出m的值.
【详解】去分母,可得
m(y-2)+3(y-1)=1,
把y=1代入,可得
m(1-2)+3(1-1)=1,
解得m=-1,
故答案为-1.
【点睛】
本题考查了分式方程的增根,在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.
三、解答题(共66分)
19、(1)图见解析;点,点,点;(2)图见解析;点,点,点;(3)是,图见解析
【分析】(1)先找到A、B、C关于y轴的对称点,然后连接、、即可,然后根据平面直角坐标系写出A、B、C的坐标,根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等即可写出的坐标;
(2)先分别将A、B、C向右平移6个单位,得到,然后连接、、即可,然后根据平移的坐标规律:横坐标左减右加即可写出的坐标;
(3)根据两个图形成轴对称的定义,画出对称轴即可.
【详解】解:(1)先找到A、B、C关于y轴的对称点,然后连接、、,如图所示:即为所求,
由平面直角坐标系可知:点A(0,4),点B(-2,2),点C(-1,1)
∴点,点,点;
(2)先分别将A、B、C向右平移6个单位,得到,然后连接、、,如图所示:即为所求,
∵点A(0,4),点B(-2,2),点C(-1,1)
∴点,点,点;
(3)如图所示,和关于直线l对称,所以直线l即为所求.
【点睛】
此题考查的是画已知图形关于y轴对称的图形、画已知图形平移后的图形和画两个图形的对称轴,掌握关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等和平移的坐标规律:横坐标左减右加是解决此题的关键.
20、-2
【分析】先利用完全平方式展开化简,再将x,y的值代入求解即可.
【详解】解:原式=(+2x-2xy+y--y)
=(-4xy+2x)
=-2x+8y-4,
代入得该式=-2.
【点睛】
本题主要考察整式化简,细心化简是解题关键.
21、(1)详见解析;(2)
【分析】(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.
【详解】(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴
∵AB=2DB=4,BE=3,
【点睛】
本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
22、(1)1;(2)
【分析】(1)利用完全平方公式计算即可;
(2)利用平方差公式计算即可.
【详解】(1)解:原式=
=
=
=1.
(2)解:原式=
=
=
=
【点睛】
本题考查了平方差公式、完全平方公式,解题的关键是熟练掌握并运用公式.
23、0
【分析】首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.
【详解】原式 =1+21 += 0
【点睛】
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
24、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有1辆.
【解析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据题目中的等量关系“①甲种货车每辆车装的件帐篷数=乙种货车每辆车装的件帐篷数+20;②甲种货车装运1000件帐篷所用车辆=乙种货车装运800件帐蓬所用车辆”,列出方程组求解即可;
(2)可设甲种汽车有m辆,乙种汽车有(16﹣m)辆,根据等量关系:甲车装运帐篷数量+乙车装运帐篷数量=这批帐篷总数量1190件,列出方程求解即可.
【详解】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有
解得
经检验,是原方程组的解.
故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;
(2)设甲种汽车有m辆,乙种汽车有(16﹣m)辆,依题意有
100m+80(16﹣m﹣1)+50=1190,
解得m=12,
16﹣m=16﹣12=1.
故甲种汽车有12辆,乙种汽车有1辆.
考点:分式方程的应用;二元一次方程组的应用.
25、15°.
【分析】已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.
【详解】∵∠A=50°,AB=AC,
∴∠ABC=∠ACB=(180°﹣∠A)=65°
又∵DE垂直且平分AB,
∴DB=AD,
∴∠ABD=∠A=50°,
∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°.
即∠DBC的度数是15°.
【点睛】
本题考查了等腰三角形的性质以及线段垂直平分线的性质.垂直平分线上任意一点,到线段两端点的距离相等.
26、(1)无解;(2)
【分析】(1)方程去分母转化为整式方程,求解即可,经检验即可得到分式方程的解;
(2)方程去分母转化为整式方程,求解即可,经检验即可得到分式方程的解.
【详解】解:(1)去分母得:,
解得:,
经检验是增根,分式方程无解;
(2)去分母得:,
去括号得:,
移项合并得:,
解得:,
经检验是分式方程的解.
【点睛】
本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
相关试卷
这是一份重庆市第一中学2023年数学八上期末监测模拟试题【含解析】,共19页。
这是一份重庆市璧山区青杠初级中学2023年数学八上期末综合测试模拟试题【含解析】,共23页。试卷主要包含了已知正比例函数,若分式,则的值为等内容,欢迎下载使用。
这是一份重庆市巴川中学2023年数学八上期末质量检测试题【含解析】,共16页。试卷主要包含了下列命题中是假命题的是,一次函数的图象与轴的交点坐标是等内容,欢迎下载使用。