重庆市第八中学2023-2024学年数学八上期末调研试题【含解析】
展开
这是一份重庆市第八中学2023-2024学年数学八上期末调研试题【含解析】,共20页。试卷主要包含了如图,在中,, ,,下列命题是真命题的有,已知等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.两个一次函数与,它们在同一直角坐标系中的图象可能是( )
A.B.
C.D.
2.某种产品的原料提价,因而厂家决定对产品进行提价,现有种方案:①第一次提价,第二次提价;②第一次提价,第二次提价;③第一次、第二次提价均为.其中和是不相等的正数.下列说法正确的是( )
A.方案①提价最多B.方案②提价最多
C.方案③提价最多D.三种方案提价一样多
3.《个人所得税》规定:全月总收入不超过3500元的免征个人工资薪金所得税,超过3500元,超过的部分(记为x)按阶梯征税,税率如下:
若某人工资薪金税前为7000元,则税后工资薪金为( )
A.245B.350C.6650D.6755
4.如图,在中,, ,.沿过点的直线折叠这个三角形,使点落在边上的点 处,折痕为.则的周长是( )
A.15B.12C.9D.6
5.把分式分子、分母中的,同时扩大为原来的2倍,那么该分式的值( )
A.扩大为原来的2倍B.缩小为原来的2倍
C.不变D.扩大为原来的4倍
6.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条图中的AB,CD两根木条,这样做是运用了三角形的
A.全等性B.灵活性C.稳定性D.对称性
7.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A.30°B.20°C.15°D.14°
8.下列命题是真命题的有( )
①若a2=b2,则a=b;
②内错角相等,两直线平行.
③若a,b是有理数,则|a+b|=|a|+|b|;
④如果∠A=∠B,那么∠A与∠B是对顶角.
A.1个B.2个C.3个D.4个
9.如果把分式中的a、b同时扩大为原来的2倍,那么得到的分式的值( )
A.不变B.扩大为原来的2倍C.缩小到原来的D.扩大为原来的4倍.
10.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )
A.10°B.15°C.20°D.25°
二、填空题(每小题3分,共24分)
11.如图是由4个相同的小正方形组成的网格图,点A、B、C、D、E都在格点上,则的度数为______.
12.如图,在平面直角坐标系中,点在直线上,过点作轴于点,作等腰直角三角形(与原点重合),再以为腰作等腰直角三角形,以为腰作等腰直角三角形;按照这样的规律进行下去,那么的坐标为______.的坐标为______.
13.一组数据2、3、-1、0、1的方差是_____.
14.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.
15.如图,已知方格纸中是4个相同的小正方形,则的度数为______.
16.把多项式进行分解因式,结果为________________.
17.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为______.
18.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.
三、解答题(共66分)
19.(10分)近几年石家庄雾霾天气严重,给人们的生活带来很大影响.某学校计划在室内安装空气净化装置,需购进,两种设备.每台种设备价格比每台种设备价格多1万元,花50万元购买的种设备和花70万元购买种设备的数量相同.
(1)求种、种设备每台各多少万元?
(2)根据单位实际情况,需购进、两种设备共10台,总费用不高于30万元,求种设备至少要购买多少台?
20.(6分)如图①,在中,和的平分线交于点过点作交于交于
(1)求证:是等腰三角形.
(2)如图①,猜想:线段与线段之间有怎样的数量关系?并说明理由.
(3)如图②,若中的平分线与三角形外角的平分线交于,过点作交于点交于点这时图中线段与线段之间的数量关系又如何?直接写出答案,不说明理由.
21.(6分)如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.
(1)求证:△ACE≌△BCD;
(2)求证:BF⊥AE;
(3)请判断∠CFE与∠CAB的大小关系并说明理由.
22.(8分)如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点.
(1)在图①中,以格点为端点画一条长度为的线段MN;
(2)在图②中,A、B、C是格点,求∠ABC的度数.
23.(8分)(1)计算:;
(2)因式分解:.
24.(8分)已知直线y=kx+b(k≠0)经过点A(3,0),B(1,2)
(1)求直线y=kx+b的函数表达式;
(2)若直线y=x﹣2与直线y=kx+b相交于点C,求点C的坐标;
(3)写出不等式kx+b>x﹣2的解.
25.(10分)已知:如图OA平分∠BAC,∠1=∠1.
求证:AO⊥BC.
同学甲说:要作辅助线;
同学乙说:要应用角平分线性质定理来解决:
同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.
请你结合同学们的讨论写出证明过程.
26.(10分)如图,已知点E,C在线段BF上,BE=CF,∠ABC=∠DEF,AB=DE,
(1)求证:△ABC≌△DEF.
(2)求证:AC∥DF
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.
【详解】A、若a>0,b0,b>0,符合,不符合,故不符合题意;
C、若a>0,b0时函数图象过一、三象限,k0时与y轴正半轴相交,b
相关试卷
这是一份重庆市第八中学2023-2024学年数学八年级第一学期期末检测试题【含解析】,共16页。试卷主要包含了答题时请按要求用笔,已知点,则点到轴的距离是等内容,欢迎下载使用。
这是一份重庆市第八中学2023-2024学年数学八上期末质量检测试题【含解析】,共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份重庆市璧山区青杠初级中学2023-2024学年数学八上期末调研模拟试题【含解析】,共20页。