中职数学高教版(2021·十四五)拓展模块一(上册)3.2.2 双曲线的几何性质获奖ppt课件
展开3.2.2双曲线的几何性质
前面,我们借助于椭圆的标准方程研究了椭圆的几何性质.那么,如何借助与双曲线的标准方程来研究双曲线的几何性质呢?
等轴双曲线:实轴与虚轴相等的双曲线叫等轴双曲线
例3 求双曲线4y²-16x²=64的实轴长、虚轴长、焦点坐标、顶点坐标、离心率与渐近线方程.
例5 用“描点法”画出双曲线 的图形.
分析:由于双曲线具有对称性,一般只需先画出双曲线在第一象限内的图形,然后利用对称性,画出全部图形.
我们可以利用双曲线的顶点和渐近线,画出双曲线的大致图像.具体步骤如下:
(1)由a²=16,得a=4,得到双曲线的两个顶点A1(-4,0)、A2(4,0); (2)由b²=9,得b=3,得到双曲线的虚轴端点B1(0,-3),B2(0,3) ; (3)作出由直线x=±4、y=±3所围成的矩形,画出矩形两条对角线所在的直线,即双曲线的两条渐近线; (4)依据双曲线经过实轴端点,且逐渐接近渐近线这一特点,画出大致图像.
例6 已知A、B两个哨所相距 1600m,在A哨所听到炮弹爆炸声比在B哨所晚3s.求炮弹爆炸点所有可能位置构成的曲线的方程(声速为 340 m/s).
分析:根据题意,由A、B两处听到爆炸声的时间差可算出A、B两处与爆炸点的距离差,它是一个定值. 因此,爆炸点所有可能的位置都在某双曲线上,又因为爆炸点距离A处比距离B处远,所以爆炸点应在该双曲线中靠近B处的一支上.
1.求下列双曲线的实轴长、虚轴长、焦点坐标、顶点坐标,离心率与渐近线方程. (1)x²-9y²=81;(2) 9x²-4y²=-36.
1.书面作业:完成教材第80页习题3.2;2.查漏补缺:根据个人情况对课堂学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容.
数学拓展模块一(上册)3.3.2 抛物线的几何性质试讲课ppt课件: 这是一份数学拓展模块一(上册)<a href="/sx/tb_c4053640_t3/?tag_id=26" target="_blank">3.3.2 抛物线的几何性质试讲课ppt课件</a>,共16页。PPT课件主要包含了探索新知,典型例题,巩固练习,归纳总结,布置作业,情境导入,对称性,离心率等内容,欢迎下载使用。
中职数学高教版(2021·十四五)拓展模块一(上册)第3章 圆锥曲线3.2 双曲线3.2.1 双曲线的标准方程试讲课课件ppt: 这是一份中职数学高教版(2021·十四五)拓展模块一(上册)<a href="/sx/tb_c4053635_t3/?tag_id=26" target="_blank">第3章 圆锥曲线3.2 双曲线3.2.1 双曲线的标准方程试讲课课件ppt</a>,共22页。PPT课件主要包含了探索新知,典型例题,巩固练习,归纳总结,布置作业,情境导入,实验探究双曲线,双曲线的定义,椭圆定义符号表示,双曲线的标准方程等内容,欢迎下载使用。
高教版(2021·十四五)拓展模块一(上册)第3章 圆锥曲线3.1 椭圆3.1.2 椭圆的几何性质公开课课件ppt: 这是一份高教版(2021·十四五)拓展模块一(上册)<a href="/sx/tb_c4053632_t3/?tag_id=26" target="_blank">第3章 圆锥曲线3.1 椭圆3.1.2 椭圆的几何性质公开课课件ppt</a>,共18页。PPT课件主要包含了探索新知,典型例题,巩固练习,归纳总结,布置作业,情境导入,牛刀小试,说出下列椭圆的范围,对称性,离心率等内容,欢迎下载使用。