年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    重庆市涪陵区名校2023年数学八年级第一学期期末监测试题【含解析】

    重庆市涪陵区名校2023年数学八年级第一学期期末监测试题【含解析】第1页
    重庆市涪陵区名校2023年数学八年级第一学期期末监测试题【含解析】第2页
    重庆市涪陵区名校2023年数学八年级第一学期期末监测试题【含解析】第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市涪陵区名校2023年数学八年级第一学期期末监测试题【含解析】

    展开

    这是一份重庆市涪陵区名校2023年数学八年级第一学期期末监测试题【含解析】,共17页。试卷主要包含了现有纸片,下列计算正确的是 .等内容,欢迎下载使用。
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
    一、选择题(每小题3分,共30分)
    1.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是( )
    A.O1B.O2C.O3D.O4
    2.化简的结果是( )
    A.B.C.D.
    3.下列美丽的图案中,不是轴对称图形的是( )
    A.B.C.D.
    4.如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为克,再称得剩余电线的质量为克, 那么原来这卷电线的总长度是( )
    A.米B.(+1)米C.(+1)米D.(+1)米
    5.现有纸片:4张边长为的正方形,3张边长为的正方形(),8张宽为,长为的长方形,用这15张纸片重新拼出一个长方形,那么该长方形较长的边长为( )
    A.B.C.D.
    6.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,这棵树在折断前的高度是( )
    A.5mB.10mC.15mD.20m
    7.用代入法解方程组时消去y,下面代入正确的是( )
    A.B.C.D.
    8.如果m﹥n,那么下列结论错误的是( )
    A.m+2﹥n+2B.m-2﹥n-2C.2m﹥2nD.-2m﹥-2n
    9.下列计算正确的是 ( ).
    A.B.C.D.
    10.已知点P(4,a+1)与点Q(-5,7-a)的连线平行于x轴,则a的值是( )
    A.2B.3C.4D.5
    二、填空题(每小题3分,共24分)
    11.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.
    12.已知关于的不等式有解,则实数的取值范围是______.
    13.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+1.其中说法正确的有________.
    14.某种病毒的直径是0.00000008米,这个数据用科学记数法表示为__________米.
    15.如图,在中,,于,平分交于,交于,,,下列结论:①;②;③;④,其中正确的结论有____________. (填序号)
    16.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.
    17.把多项式进行分解因式,结果为________________.
    18.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.
    三、解答题(共66分)
    19.(10分)计算:
    (1)(2a)3×b4÷12a3b2
    (2)(23)
    20.(6分)如图,在锐角三角形ABC中,AB = 13,AC = 15,点D是BC边上一点,BD = 5,AD = 12,求BC的长度.
    21.(6分)某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为、、、四个等级.其中相应等级的得分依次记为10分、9分、1分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:
    请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.
    22.(8分)已知P点坐标为(a+1,2a-3).
    (1)点P在x轴上,则a= ;
    (2)点P在y轴上,则a= ;
    (3)点P在第四象限内,则a的取值范围是 ;
    (4)点P一定不在 象限.
    23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(,5),(,3).
    ⑴请在如图所示的网格平面内作出平面直角坐标系;
    ⑵请作出△ABC关于y轴对称的△A′B′C′;
    ⑶写出点B′的坐标.
    24.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
    (1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
    (2)当它们行驶7了小时时,两车相遇,求乙车速度.
    25.(10分)如图,已知,,.
    (1)请你判断与的数量关系,并说明理由;
    (2)若,平分,试求的度数.
    26.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;
    (1)求购买一个甲种足球、一个乙种足球各需多少元;
    (2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
    参考答案
    一、选择题(每小题3分,共30分)
    1、A
    【分析】连接任意两对对应点,连线的交点即为对称中心.
    【详解】如图,连接HC和DE交于O1,
    故选A.
    【点睛】
    此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.
    2、A
    【分析】先通分,然后根据分式的加法法则计算即可.
    【详解】解:
    =
    =
    =
    故选A.
    【点睛】
    此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.
    3、A
    【解析】根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】解:A、不是轴对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选A.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、B
    【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.
    【详解】剩余电线的长度为米,所以总长度为(+1)米.
    故选B
    5、A
    【分析】先计算所拼成的长方形的面积(是一个多项式),再对面积进行因式分解,即可得出长方形的长和宽.
    【详解】解:根据题意可得:
    拼成的长方形的面积=4a2+3b2+8ab,
    又∵4a2+3b2+8ab=(2a+b)(2a+3b),且b<3b,
    ∴那么该长方形较长的边长为2a+3b.
    故选:A.
    【点睛】
    本题考查因式分解的应用.能将所表示的长方形的面积进行因式分解是解决此题的关键.
    6、C
    【分析】根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度.
    【详解】如图,在Rt△ABC中,∠BCA=90°,CB=5,∠BAC=30°,∴AB=10,∴大树的高度为10+5=15(m).
    故选C.
    【点睛】
    本题考查了直角三角形的性质:30°所对的直角边等于斜边的一半,掌握这条性质是解答本题的关键.
    7、D
    【分析】方程组利用代入消元法变形得到结果,即可作出判断.
    【详解】用代入法解方程组时,
    把y=1-x代入x-2y=4,
    得:x-2(1-x)=4,
    去括号得:,
    故选:D.
    【点睛】
    本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
    8、D
    【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.
    【详解】A. 两边都加2,不等号的方向不变,故A正确;
    B. 两边都减2,不等号的方向不变,故B正确;
    C. 两边都乘以2,不等号的方向不变,故C正确;
    D. 两边都乘以-2,不等号的方向改变,故D错误;
    故选D.
    【点睛】
    此题考查不等式的性质,解题关键在于掌握运算法则
    9、A
    【解析】请在此填写本题解析!
    A. ∵ , 故正确;
    B. ∵ , 故不正确;
    C. ∵a3与a2不是同类项,不能合并 ,故不正确;
    D. ∵ , 故不正确;
    故选A.
    10、B
    【分析】根据平行于x轴的直线上点的坐标特征得到a+1=7-a,然后解一元一次方程即可.
    【详解】解:∵PQ∥x轴,
    ∴点P和点Q的纵坐标相同,
    即a+1=7-a,
    ∴a=1.
    故选:B.
    【点睛】
    本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是掌握平行于x轴的直线上点的坐标特征.
    二、填空题(每小题3分,共24分)
    11、50°
    【分析】根据直角三角形两锐角互余进行求解即可.
    【详解】∵直角三角形的一个内角为40°,
    ∴这个直角三角形的另一个锐角=90°﹣40°=50°,
    故答案为50°.
    【点睛】
    本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.
    12、
    【分析】先根据绝对值的意义求出的取值范围,然后根据不等式组解集的确定方法求解即可.
    【详解】由绝对值的意义可知:是表示数轴上数x对应的点到和对应点的距离之和,则,
    不等式有解,

    即的取值范围是.
    故答案为:.
    【点睛】
    本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
    13、①④
    【分析】设桌子高度为xcm,每本字典的厚度为ycm,根据题意列方程组求得x、y的值,再逐一判断即可.
    【详解】解:设桌子高度为xcm,每本字典的厚度为ycm,根据题意,
    ,解得:,
    则每本字典的厚度为5cm,故①正确;
    桌子的高度为1cm,故②错误;
    把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:1+11×5=140cm,故③错误;
    若有x本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+1,故④正确;
    故答案为:①④.
    【点睛】
    本题主要考查了二元一次方程组和一次函数的应用能力,解题的关键是根据题意列方程组求得桌子高度和每本字典厚度.
    14、
    【分析】把一个数表示成a与10的n次幂相乘的形式这种记数法叫做科学记数法,以此可得.
    【详解】,
    故答案为:1×10-1.
    【点睛】
    本题考查科学记数法的知识点,熟练掌握科学记数法的记数法是本题的关键.
    15、①②③④
    【分析】只要证明∠AFE=∠AEF,四边形FGCH是平行四边形,△FBA≌△FBH即可解决问题.
    【详解】∵∠FBD=∠ABF,∠FBD+∠BFD=90°,∠ABF+∠AEB=90°
    ∴∠BFD=∠AEB
    ∴∠AFE=∠AEB
    ∴AF=AE,故①正确
    ∵FG∥BC,FH∥AC
    ∴四边形FGCH是平行四边形
    ∴FH=CG,FG=CH,∠FHD=∠C
    ∵∠BAD+∠DAC=90°,∠DAC+∠C=90°
    ∴∠BAF=∠BHF
    ∵BF=BF,∠FBA=∠FBH
    ∴△FBA≌△FBH(AAS)
    ∴FA=FH,AB=BH,故②正确
    ∵AF=AE,FH=CG
    ∴AE=CG
    ∴AG=CE,故③正确
    ∵BC=BH+HC,BH=BA,CH=FG
    ∴BC=AB+FG,故④正确
    故答案为:①②③④
    【点睛】
    本题主要考查全等三角形的判定和性质,关键是选择恰当的判定条件,同时要注意利用公共边、公共角进行全等三角形的判定.
    16、1
    【解析】试题分析:由垂线段最短可知,当PQ与OM垂直的时候,PQ的值最小,根据角平分线的性质可知,此时PA=PQ=1.
    故答案为1.
    考点:角平分线的性质;垂线段最短.
    17、2(2x+1)(3x-7)
    【分析】先提取公因式2,再利用十字相乘法进行因式分解.
    【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7).
    故答案为:2(2x+1)(3x-7).
    【点睛】
    考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底.
    18、10
    【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.
    故答案为10.
    三、解答题(共66分)
    19、(1);(2).
    【分析】(1)直接利用整式的乘除运算法则进而求出答案;
    (2)直接利用二次根式的混合运算法则计算得出答案.
    【详解】解:(1)原式=8a3•b4÷12a3b2
    b2;
    (2)原式=(89)

    【点睛】
    本题考查了二次根式的混合运算,正确掌握相关运算法则是解题的关键.
    20、14
    【分析】根据勾股定理的逆定理可判断出△ADB为直角三角形,即∠ADB=90°,在Rt△ADC中利用勾股定理可得出CD的长度从而求出BC长.
    【详解】在△ABD中,
    ∵ AB=13,BD=5,AD=12,
    ∴ ,

    ∴∠ADB=∠ADC=90º
    在Rt△ACD中,由勾股定理得,

    ∴ BC = BD + CD = 5+9 =14
    【点睛】
    本题考查了勾股定理及勾股定理的逆定理,属于基础题,解答本题的关键是判断出∠ADB=90°.
    21、答案不唯一.
    【分析】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.
    【详解】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给分.
    如:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.
    再如:选择二班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,二班的众数高于一班,因此可以选择二班参加校级比赛.
    【点睛】
    此题主要考查结合统计图进行数据分析,熟练理解相关概念是解题关键.
    22、(1);(2);(3);(4)第二.
    【分析】(1)根据x轴上的点的纵坐标为0即可得;
    (2)根据y轴上的点的横坐标为0即可得;
    (3)根据第四象限内点的横坐标大于0,纵坐标小于0即可得;
    (4)根据第一、二、三、四象限内的点坐标特征建立关于a的不等式组,不等式组无解的象限即为所求.
    【详解】(1)由x轴上的点的纵坐标为0得:,
    解得,
    故答案为:;
    (2)由y轴上的点的横坐标为0得:,
    解得,
    故答案为:;
    (3)由第四象限内点的横坐标大于0,纵坐标小于0得:,
    解得,
    故答案为:;
    (4)①当点P在第一象限内时,
    则,解得,
    即当时,点P在第一象限内;
    ②当点P在第二象限内时,
    则,
    此不等式组无解,
    即点P一定不在第二象限内;
    ③当点P在第三象限内时,
    则,解得,
    即当时,点P在第三象限内;
    ④由(3)可知,当时,点P在第四象限内;
    综上,点P一定不在第二象限内,
    故答案为:第二.
    【点睛】
    本题考查了平面直角坐标系中,点坐标的特征、一元一次不等式组等知识点,掌握理解点坐标的特征是解题关键.
    23、⑴⑵如图,⑶B′(2,1)
    【分析】(1)易得y轴在C的右边一个单位,x轴在C的下方3个单位;
    (2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;
    (3)根据所在象限及距离坐标轴的距离可得相应坐标.
    【详解】解:
    (1)如图;
    (2)如图;
    (3)点B′的坐标为(2,1).
    24、(1)
    (2)75(千米/小时)
    【分析】(1)先根据图象和题意知道,甲是分段函数,所以分别设0

    相关试卷

    重庆市涪陵区名校2023年数学八上期末综合测试试题【含解析】:

    这是一份重庆市涪陵区名校2023年数学八上期末综合测试试题【含解析】,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列多项式中,能分解因式的是等内容,欢迎下载使用。

    重庆市涪陵区名校2023年八年级数学第一学期期末联考试题【含解析】:

    这是一份重庆市涪陵区名校2023年八年级数学第一学期期末联考试题【含解析】,共20页。试卷主要包含了下列各数,是无理数的是,无理数2﹣3在等内容,欢迎下载使用。

    重庆市涪陵区名校2023年八年级数学第一学期期末达标测试试题【含解析】:

    这是一份重庆市涪陵区名校2023年八年级数学第一学期期末达标测试试题【含解析】,共17页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map